Skip to main content Accessibility help
×
Home

Well–definedness and efficient inference for probabilistic logic programming under the distribution semantics

  • FABRIZIO RIGUZZI (a1) and TERRANCE SWIFT (a2)

Abstract

Distribution semantics is one of the most prominent approaches for the combination of logic programming and probability theory. Many languages follow this semantics, such as Independent Choice Logic, PRISM, pD, Logic Programs with Annotated Disjunctions (LPADs), and ProbLog. When a program contains functions symbols, the distribution semantics is well–defined only if the set of explanations for a query is finite and so is each explanation. Well–definedness is usually either explicitly imposed or is achieved by severely limiting the class of allowed programs. In this paper, we identify a larger class of programs for which the semantics is well–defined together with an efficient procedure for computing the probability of queries. Since Logic Programs with Annotated Disjunctions offer the most general syntax, we present our results for them, but our results are applicable to all languages under the distribution semantics. We present the algorithm “Probabilistic Inference with Tabling and Answer subsumption” (PITA) that computes the probability of queries by transforming a probabilistic program into a normal program and then applying SLG resolution with answer subsumption. PITA has been implemented in XSB and tested on six domains: two with function symbols and four without. The execution times are compared with those of ProbLog, cplint, and CVE. PITA was almost always able to solve larger problems in a shorter time, on domains with and without function symbols.

Copyright

References

Hide All
Baselice, S., Bonatti, P. and Criscuolo, G. 2009. On finitely recursive programs. Theory and Practice of Logic Programming 9, 2, 213238.
Calimeri, F., Cozza, S., Ianni, G. and Leone, N. 2008. Computable functions in ASP: Theory and implementation. In Proc. of International Conference on Logic Programming, de la Banda, M. Garcia and Pontelli, E., Eds. LNCS, vol. 5366. Springer, 407424.
Chen, W. and Warren, D. S. 1996. Tabled evaluation with delaying for general logic programs. Journal of the Association for Computing Machinery 43, 1, 2074.
De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A., Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Costa, V. S., Thon, I. and Vennekens, J. 2008. Towards digesting the alphabet-soup of statistical relational learning. In Proc. of the NIPS2008 Workshop on Probabilistic Programming, 13 December 2008, Whistler, Canada.
De Raedt, L., Kimmig, A. and Toivonen, H. 2007. ProbLog: A probabilistic prolog and its application in link discovery. In Proc. of the International Joint Conference on Artificial Intelligence, Veloso, M., Ed. IJCAI, 24622467.
Fuhr, N. 2000. Probabilistic datalog: Implementing logical information retrieval for advanced applications. Journal of the American Society of Information Sciences 51, 2, 95110.
Kameya, Y. and Sato, T. 2000. Efficient EM learning with tabulation for parameterized logic programs. In Proc. of the International Conference on Computational Logic, Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K., Palamidessi, K., Pereira, L. M., Sagiv, Y. and Stuckey, P., Eds. LNCS, vol. 1861. Springer, 269284.
Kimmig, A., Demoen, B., De Raedt, L., Costa, V. S. and Rocha, R. 2011. On the implementation of the probabilistic logic programming language problog. Theory and Practice of Logic Programming 11, Special Issue 2–3, 235262.
Kimmig, A., Gutmann, B. and SantoCosta, V. Costa, V. 2009. Trading memory for answers: Towards tabling ProbLog. In Proc. of the International Workshop on Statistical Relational Learning, 2–4 July 2009, Leuven, Belgium.
Kolmogorov, A. N. 1950. Foundations of the Theory of Probability. Chelsea Publishing Company, New York.
Mantadelis, T. and Janssens, G. 2010. Dedicated tabling for a probabilistic setting. In Proc. of the Technical Communications of the International Conference on Logic Programming, Hermenegildo, M. and Schaub, T., Eds. LIPIcs, vol. 7. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 124133.
Meert, W., Struyf, J. and Blockeel, H. 2009. CP-Logic theory inference with contextual variable elimination and comparison to BDD based inference methods. In Proc. of the International Conference on Inductive Logic Programming, De Raedt, L., Ed. LNCS, vol. 5989. Springer, 96109.
Poole, D. 1997. The independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence 94, 1–2, 756.
Poole, D. 2000. Abducing through negation as failure: Stable models within the independent choice logic. Journal of Logic Programming 44, 1–3, 535.
Przymusinski, T. 1989. Every logic program has a natural stratification and an iterated least fixed point model. In Proc. of the Symposium on Principles of Database Systems, Silberschatz, A., Ed. ACM Press, 1121.
Riguzzi, F. 2007. A top down interpreter for LPAD and CP–logic. In Proc. of the Congress of the Italian Association for Artificial Intelligence, Basili, R. and Pazienza, M. T., Eds. LNAI, vol. 4733. Springer, 109120.
Riguzzi, F. 2008. Inference with logic programs with annotated disjunctions under the well founded semantics. In Proc. of International Conference on Logic Programming, de la Banda, M. Garcia and Pontelli, E., Eds. LNCS, vol. 5366. Springer, 667771.
Riguzzi, F. and Swift, T. 2011. The PITA system: Tabling and answer subsumption for reasoning under uncertainty. Theory and Practice of Logic Programming, International Conference on Logic Programming, Special Issue 11, 4–5, 433449.
Sagonas, K., Swift, T. and Warren, D. S. 2000. The limits of fixed-order computation. Theoretical Computer Science 254, 1–2, 465499.
Sato, T. 1995. A statistical learning method for logic programs with distribution semantics. In Proc. of the International Conference on Logic Programming, Sterling, L., Ed. MIT Press, 715729.
Sato, T. and Kameya, Y. 1997. Prism: A language for symbolic-statistical modeling. In Proc. of the International Joint Conference on Artificial Intelligence, Pollack, M., Ed. IJCAI, 13301339.
Swift, T. 1999a. A new formulation of tabled resolution with delay. In Recent Advances in Artifiial Intelligence, Barahona, P. and Alferes, J. J., Eds. LNAI, vol. 1695. Springer, 163177.
Swift, T. 1999b. Tabling for non-monotonic programming. Annals of Mathematics and Artificial Intelligence 25, 3–4, 201240.
Tamaki, H. and Sato, T. 1986. OLDU resolution with tabulation. In Proc. of the International Conference on Logic Programming, Shapiro, E., Ed. LNCS, vol. 225. Springer, 8498.
Thayse, A., Davio, M. and Deschamps, J. P. 1978. Optimization of multivalued decision algorithms. In Proc. of the International Symposium on Multiple-Valued Logic. IEEE Computer Society Press, 171178.
Valiant, L. G. 1979. The complexity of enumeration and reliability problems. SIAM Journal on Computing 8, 3, 410421.
van Gelder, A. 1989. The alternating fixpoint of logic programs with negation. In Proc. of the Symposium on Principles of Database Systems, Silberschatz, A., Ed. ACM, 110.
van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general logic programs. Journal of the Association for Computing Machinery 38, 3, 620650.
Vennekens, J. and Verbaeten, S. 2003. Logic Programs with Annotated Disjunctions. Technical Report CW386, K. U. Leuven, Belgium.
Vennekens, J., Verbaeten, S. and Bruynooghe, M. 2004. Logic programs with annotated disjunctions. In Proc. of the International Conference on Logic Programming, Demoen, B. and Lifschitz, V., Eds. LNCS, vol. 3131. Springer, 195209.

Keywords

Related content

Powered by UNSILO
Type Description Title
PDF
Supplementary materials

RIGUZZI and SWIFT supplementary material
Online Appendix

 PDF (286 KB)
286 KB

Well–definedness and efficient inference for probabilistic logic programming under the distribution semantics

  • FABRIZIO RIGUZZI (a1) and TERRANCE SWIFT (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.