Skip to main content

A Common Genetic Influence on Human Intensity Ratings of Sugars and High-Potency Sweeteners

  • Liang-Dar Hwang (a1) (a2), Gu Zhu (a1), Paul A. S. Breslin (a3) (a4), Danielle R. Reed (a3), Nicholas G. Martin (a1) and Margaret J. Wright (a1)...

The perception of sweetness varies among individuals but the sources of this variation are not fully understood. Here, in a sample of 1,901 adolescent and young adults (53.8% female; 243 MZ and 452 DZ twin pairs, 511 unpaired individuals; mean age 16.2 ± 2.8, range 12–26 years), we studied the variation in the perception of sweetness intensity of two monosaccharides and two high-potency sweeteners: glucose, fructose, neohesperidine dihydrochalcone (NHDC), and aspartame. Perceived intensity for all sweeteners decreased with age (2–5% per year) and increased with the history of otitis media (6–9%). Males rated aspartame slightly stronger than females (7%). We found similar heritabilities for sugars (glucose: h 2 = 0.31, fructose: h 2 = 0.34) and high-potency sweeteners (NHDC: h 2 = 0.31, aspartame: h 2 = 0.30); all were in the modest range. Multivariate modeling showed that a common genetic factor accounted for >75% of the genetic variance in the four sweeteners, suggesting that individual differences in perceived sweet intensity, which are partly due to genetic factors, may be attributed to a single set of genes. This study provided evidence of the shared genetic pathways between the perception of sugars and high-potency sweeteners.

Corresponding author
address for correspondence: Liang-Dar Hwang, Neuroimaging Genetics Group, QIMR Berghofer Medical Research Institute, Herston QLD 4006, Australia. E-mail:
Hide All
Aitken, J. F., Green, A., Eldridge, A., Green, L., Pfitzner, J., Battistutta, D., . . . Martin, N. G. (1994). Comparability of naevus counts between and within examiners, and comparison with computer image analysis. British Journal of Cancer, 69, 487491.
Bartoshuk, L. M., Duffy, V. B., Hayes, J. E., Moskowitz, H. R., & Snyder, D. J. (2006). Psychophysics of sweet and fat perception in obesity: Problems, solutions, and new perspectives. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 361, 11371148.
Bartoshuk, L. M., Duffy, V. B., Reed, D., & Williams, A. (1996). Supertasting, earaches, and head injury: Genetics and pathology alter our taste. Neuroscience Biobehavioral Research, 20, 7987.
Bernstein, I. L., Fenner, D. P., & Diaz, J. (1986). Influence of taste stimulation during the suckling period on adult taste preference in rats. Physiology & Behavior, 36, 913919.
Bertino, M., & Wehmer, F. (1981). Dietary influences on the development of sucrose acceptability in rats. Developmental Psychobiology, 14, 1928.
Bretz, W. A., Corby, P. M., Melo, M. R., Coelho, M. Q., Costa, S. M., Robinson, M., . . . Hart, T. C. (2006). Heritability estimates for dental caries and sucrose sweetness preference. Archives of Oral Biology, 51, 11561160.
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer Science & Business Media.
Desor, J. A., & Beauchamp, G. K. (1987). Longitudinal changes in sweet preferences in humans. Physiology & Behavior, 39, 639641.
Fushan, A. A., Simons, C. T., Slack, J. P., & Drayna, D. (2010). Association between common variation in genes encoding sweet taste signaling components and human sucrose perception. Chemical Senses, 35, 579592.
Fushan, A. A., Simons, C. T., Slack, J. P., Manichaikul, A., & Drayna, D. (2009). Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Current Biology, 19, 12881293.
Green, B. G., Shaffer, G. S., & Gilmore, M. (1993). Derivation and evaluation of a semantic scale of oral sensation magnitude with apparent ratio properties. Chemical Senses, 18, 683702.
Hansen, J. L., Reed, D. R., Wright, M. J., Martin, N. G., & Breslin, P. A. (2006). Heritability and genetic covariation of sensitivity to PROP, SOA, quinine HCl, and caffeine. Chemical Senses, 31, 403413.
Keller, M. C., & Coventry, W. L. (2005). Quantifying and addressing parameter indeterminacy in the classical twin design. Twin Research and Human Genetics, 8, 201213.
Keskitalo, K., Knaapila, A., Kallela, M., Palotie, A., Wessman, M., Sammalisto, S., . . . Perola, M. (2007a). Sweet taste preferences are partly genetically determined: Identification of a trait locus on chromosome 16. American Journal of Clinical Nutrition, 86, 5563.
Keskitalo, K., Tuorila, H., Spector, T. D., Cherkas, L. F., Knaapila, A., Silventoinen, K. . . . Perola, M. (2007b). Same genetic components underlie different measures of sweet taste preference. American Journal of Clinical Nutrition, 86, 16631669.
Knaapila, A., Hwang, L. D., Lysenko, A., Duke, F. F., Fesi, B., Khoshnevisan, A., . . . Reed, D. R. (2012). Genetic analysis of chemosensory traits in human twins. Chemical Senses, 37, 869881.
Luciano, M., Wright, M. J., Duffy, D. L., Wainwright, M. A., Zhu, G., Evans, D. M., . . . Martin, N. G. (2006). Genome-wide scan of IQ finds significant linkage to a quantitative trait locus on 2q. Behavior Genetics, 36, 4555.
Mennella, J. A., Finkbeiner, S., Lipchock, S. V., Hwang, L. D., & Reed, D. R. (2014). Preferences for salty and sweet tastes are elevated and related to each other during childhood. PLoS One, 9, e92201.
Mennella, J. A., Finkbeiner, S., & Reed, D. R. (2012). The proof is in the pudding: Children prefer lower fat but higher sugar than do mothers. International Journal of Obesity, 36, 12851291.
Mennella, J. A., Pepino, M. Y., & Reed, D. R. (2005). Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics, 115, e216e222.
Mennella, J. A., Reed, D. R., Mathew, P. S., Roberts, K. M., & Mansfield, C. J. (2015). ‘A spoonful of sugar helps the medicine go down’: Bitter masking by sucrose among children and adults. Chem Senses, 40, 1725.
Nakamura, Y., Sanematsu, K., Ohta, R., Shirosaki, S., Koyano, K., Nonaka, K., . . . Ninomiya, Y. (2008). Diurnal variation of human sweet taste recognition thresholds is correlated with plasma leptin levels. Diabetes, 57, 26612665.
Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2002). Mx: Statistical modeling (6th ed.), Richmond, VA: Department of Psychiatry, Virginia Commonwealth University.
Reed, D. R., Tanaka, T., & McDaniel, A. H. (2006). Diverse tastes: Genetics of sweet and bitter perception. Physiology & behavior, 88, 215226.
Schechter, P. J., & Henkin, R. I. (1974). Abnormalities of taste and smell after head trauma. Journal of Neurology, Neurosurgery & Psychiatry, 37, 802810.
Thai, P.-K., Tan, E.-C., Tan, W.-L., Tey, T.-H., Kaur, H., . . . Say, Y.-H. (2011). Sweetness intensity perception and pleasantness ratings of sucrose, aspartame solutions, and cola among multi-ethnic Malaysian subjects. Food Quality and Preference, 22, 281289.
Tordoff, M. G., & Alleva, A. M. (1990). Oral stimulation with aspartame increases hunger. Physiology & Behavior, 47, 555559.
Wright, M. J., De Geus, E., Ando, J., Luciano, M., Posthuma, D., Ona, Y., . . . Boomsma, D. (2001). Genetics of cognition: Outline of a collaborative twin study. Twin Research, 4, 4856.
Wright, M. J., & Martin, N. G. (2004). Brisbane adolescent twin study: Outline of study methods and research projects. Australian Journal of Psychology, 56, 6578.
Wurtman, J. J., & Wurtman, R. J. (1979). Sucrose consumption early in life fails to modify the appetite of adult rats for sweet foods. Science, 295, 321322.
Yee, K. K., Sukumaran, S. K., Kotha, R., Gilbertson, T. A., & Margolskee, R. F. (2011). Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 54315436.
Yoshida, R., Ohkuri, T., Jyotaki, M., Yasuo, T., Horio, N., Yasumatsu, K., . . . Ninomiya, Y. (2010). Endocannabinoids selectively enhance sweet taste. Proceedings of the National Academy of Sciences of the United States of America, 107, 935939.
Zhu, G., Duffy, D. L., Eldridge, A., Grace, M., Mayne, C., O’Gorman, L., . . . Martin, N. G. (1999). A major quantitative-trait locus for mole density is linked to the familial melanoma gene CDKN2A: A maximum-likelihood combined linkage and association analysis in twins and their sibs. American Journal of Human Genetics, 65, 483492.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed