Skip to main content
×
Home

Epigenome-Wide Association Study of Aggressive Behavior

  • Jenny van Dongen (a1) (a2), Michel G. Nivard (a1), Bart M. L. Baselmans (a1) (a2), Nuno R. Zilhão (a1), Lannie Ligthart (a1), BIOS Consortium (a3), Bastiaan T. Heijmans (a4), Meike Bartels (a1) (a2) and Dorret I. Boomsma (a1) (a2)...
Abstract

Aggressive behavior is highly heritable, while environmental influences, particularly early in life, are also important. Epigenetic mechanisms, such as DNA methylation, regulate gene expression throughout development and adulthood, and may mediate genetic and environmental effects on complex traits. We performed an epigenome-wide association study (EWAS) to identify regions in the genome where DNA methylation level is associated with aggressive behavior. Subjects took part in longitudinal survey studies from the Netherlands Twin Register (NTR) and participated in the NTR biobank project between 2004 and 2011 (N = 2,029, mean age at blood sampling = 36.4 years, SD = 12.4, females = 69.2%). Aggressive behavior was rated with the ASEBA Adult Self-Report (ASR). DNA methylation was measured in whole blood by the Illumina HM450k array. The association between aggressive behavior and DNA methylation level at 411,169 autosomal sites was tested. Association analyses in the entire cohort showed top sites at cg01792876 (chr8; 116,684,801, nearest gene = TRPS1, p = 7.6 × 10−7, False discovery rate (FDR) = 0.18) and cg06092953 (chr18; 77,905,699, nearest gene = PARD6G-AS1, p = 9.0 ×10−7, FDR = 0.18). Next, we compared methylation levels in 20 pairs of monozygotic (MZ) twins highly discordant for aggression. Here the top sites were cg21557159 (chr 11; 107,795,699, nearest gene = RAB39, p = 5.7 × 10−6, FDR = 0.99), cg08648367 (chr 19; 51,925,472, nearest gene = SIGLEC10, p = 7.6 × 10−6, FDR = 0.99), and cg14212412 (chr 6; 105,918,992, nearest gene = PREP, p = 8.0 × 10−6, FDR = 0.99). The two top hits based on the entire cohort showed the same direction of effect in discordant MZ pairs (cg01792876, P discordant twins = 0.09 and cg06092953, P discordant twins = 0.24). The other way around, two of the three most significant sites in discordant MZ pairs showed the same direction of effect in the entire cohort (cg08648367, Pentire EWAS = 0.59 and cg14212412, Pentire EWAS = 3.1 × 10−3). Gene ontology analysis highlighted significant enrichment of various central nervous system categories among higher-ranking methylation sites. Higher-ranking methylation sites also showed enrichment for DNase I hypersensitive sites and promoter regions, showing that DNA methylation in peripheral tissues is likely to be associated with aggressive behavior.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Epigenome-Wide Association Study of Aggressive Behavior
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Epigenome-Wide Association Study of Aggressive Behavior
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Epigenome-Wide Association Study of Aggressive Behavior
      Available formats
      ×
Copyright
Corresponding author
address for correspondence: Jenny van Dongen, Department of Biological Psychology, VU Amsterdam, Van der Boechorststraat 1, 1081BT Amsterdam, The Netherlands. E-mail: j.van.dongen@vu.nl
References
Hide All
Achenbach T. M., & Rescorla L. A. (2003). Manual for the ASEBA adult forms and profiles. Burlington, VT: Research Center for Children, Youth, & Families, University of Vermont.
Alink L. R., Mesman J., van Zeijl J., Stolk M. N., Juffer F., Koot H. M., Bakermans-Kranenburg M. J., & van Ijzendoorn M. H. (2006). The early childhood aggression curve: Development of physical aggression in 10- to 50-month-old children. Child Development, 77, 954–66.
Bakulski K. M., Lee H., Feinberg J. I., Wells E. M., Brown S., Herbstman J. B., . . . Fallin M. D. (2015). Prenatal mercury concentration is associated with changes in DNA methylation at TCEANC2 in newborns. International Journal of Epidemiology. 44, 1249–62, doi: 10.1093/ije/dyv032.
Bibikova M., Barnes B., Tsan C., Ho V., Klotzle B., Le J. M., . . . Shen R. (2011). High density DNA methylation array with single CpG site resolution. Genomics, 98, 288295.
Bird A. (2007). Perceptions of epigenetics. Nature, 447, 396398.
Boles S. M., & Miotto K. (2003). Substance abuse and violence: A review of the literature. Aggression and Violent Behavior, 8, 155174.
Boomsma D. I., de Geus E. J., Vink J. M., Stubbe J. H., Distel M. A., Hottenga J. J., . . . Willemsen G. (2006). Netherlands twin register: From twins to twin families. Twin Research and Human Genetics, 9, 849857.
Breton C. V., Byun H. M., Wenten M., Pan F., Yang A., & Gilliland F. D. (2009). Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. American Journal of Respiratory and Critical Care Medicine, 180, 462467.
Checknita D., Maussion G., Labonte B., Comai S., Tremblay R. E., Vitaro F., . . . Turecki G. (2015). Monoamine oxidase a gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder. British Journal of Psychiatry, 206, 216222.
Chen G. Y., Tang J., Zheng P., & Liu Y. (2009). CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science, 323, 17221725.
Chen T., Han Y., Yang M., Zhang W., Li N., Wan T., . . . Cao X. (2003). Rab39, a novel Golgi-associated Rab GTPase from human dendritic cells involved in cellular endocytosis. Biochemical and Biophysical Research Communications, 303, 11141120.
Chen Y. A., Lemire M., Choufani S., Butcher D. T., Grafodatskaya D., Zanke B. W., . . . Weksberg R. (2013). Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics, 8, 203209.
Coccaro E. F. (2012). Intermittent explosive disorder as a disorder of impulsive aggression for DSM-5. American Journal of Psychiatry, 169, 577588.
Coie J. D., Lochman J. E., Terry R., & Hyman C. (1992). Predicting early adolescent disorder from childhood aggression and peer rejection. Journal of Consulting and Clinical Psychology, 60, 783792.
Cote S. M., Boivin M., Nagin D. S., Japel C., Xu Q., Zoccolillo M., . . . Tremblay R. E. (2007). The role of maternal education and nonmaternal care services in the prevention of children's physical aggression problems. Archives of General Psychiatry, 64, 13051312.
Cote S. M., Vaillancourt T., LeBlanc J. C., Nagin D. S., & Tremblay R. E. (2006). The development of physical aggression from toddlerhood to pre-adolescence: A nation-wide longitudinal study of Canadian children. Journal of Abnormal Child Psychology, 34, 7185.
Dresner E., Agam G., & Gozes I. (2011). Activity-dependent neuroprotective protein (ADNP) expression level is correlated with the expression of the sister protein ADNP2: Deregulation in schizophrenia. European Neuropsychopharmacology, 21, 355361.
Eden E., Navon R., Steinfeld I., Lipson D., & Yakhini Z. (2009). GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics, 10, 48.
ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 5774.
Fortin J. P., Labbe A., Lemire M., Zanke B. W., Hudson T. J., Fertig E. J., . . . Hansen K. D. (2014). Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biology, 15, 503.
Frenssen F., Croonenberghs J., Van den Steene H., & Maes M. (2015). Prolyl endopeptidase and dipeptidyl peptidase IV are associated with externalizing and aggressive behaviors in normal and autistic adolescents. Life Sciences, 136, 157162.
Garcia-Horsman J. A., Mannisto P. T., & Venalainen J. I. (2007). On the role of prolyl oligopeptidase in health and disease. Neuropeptides, 41, 124.
Genome of the Netherlands Consortium. (2014). Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nature Genetics, 46, 818825.
Guillemin C., Provencal N., Suderman M., Cote S. M., Vitaro F., Hallett M., . . . Szyf M. (2014). DNA methylation signature of childhood chronic physical aggression in T cells of both men and women. PLoS.One, 9, e86822.
Hudziak J. J., van Beijsterveldt C. E., Bartels M., Rietveld M. J., Rettew D. C., Derks E. M., . . . Boomsma D. I. (2003). Individual differences in aggression: Genetic analyses by age, gender, and informant in 3-, 7-, and 10-year-old Dutch twins. Behavior Genetics, 33, 575589.
Kent W. J., Sugnet C. W., Furey T. S., Roskin K. M., Pringle T. H., Zahler A. M., & Haussler D. (2002). The human genome browser at UCSC. Genome Research, 12, 9961006.
Kushnir M., Dresner E., Mandel S., & Gozes I. (2008). Silencing of the ADNP-family member, ADNP2, results in changes in cellular viability under oxidative stress. Journal of Neurochemistry, 105, 537545.
Lai M. K., Tsang S. W., Francis P. T., Esiri M. M., Keene J., Hope T., & Chen C. P. (2003). Reduced serotonin 5-HT1A receptor binding in the temporal cortex correlates with aggressive behavior in Alzheimer's disease. Brain Research, 974, 8287.
Maes M., Goossens F., Scharpe S., Calabrese J., Desnyder R., & Meltzer H. Y. (1995). Alterations in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: Effects of antidepressants, mood stabilizers, and antipsychotic drugs. Psychiatric Research, 58, 217225.
Mantle D., Falkous G., Ishiura S., Blanchard P. J., & Perry E. K. (1996). Comparison of proline endopeptidase activity in brain tissue from normal cases and cases with Alzheimer's disease, Lewy body dementia, Parkinson's disease and Huntington's disease. Clinica Chimica Acta, 249, 129139.
McEachin R. C., Chen H., Sartor M. A., Saccone S. F., Keller B. J., Prossin A. R., . . . McInnis M. G. (2010). A genetic network model of cellular responses to lithium treatment and cocaine abuse in bipolar disorder. BMC Systems Biology, 4, 158.
McGowan P. O., Sasaki A., D’Alessio A. C., Dymov S., Labonte B., Szyf M., . . . Meaney M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348.
Mill J., & Heijmans B. T. (2013). From promises to practical strategies in epigenetic epidemiology. Nature Reviews Genetics, 14, 585594.
Moechars D., Lorent K., De Strooper B., Dewachter I., & Van Leuven F. (1996). Expression in brain of amyloid precursor protein mutated in the alpha-secretase site causes disturbed behavior, neuronal degeneration and premature death in transgenic mice. EMBO Journal, 15, 12651274.
Momeni N., Nordstrom B. M., Horstmann V., Avarseji H., & Sivberg B. V. (2005). Alterations of prolyl endopeptidase activity in the plasma of children with autistic spectrum disorders. BMC Psychiatry, 5, 27.
Moore T. M., Stuart G. L., Meehan J. C., Rhatigan D. L., Hellmuth J. C., & Keen S. M. (2008). Drug abuse and aggression between intimate partners: A meta-analytic review. Clinical Psychology Review, 28, 247274.
Mori Y., Matsui T., Omote D., & Fukuda M. (2013). Small GTPase Rab39A interacts with UACA and regulates the retinoic acid-induced neurite morphology of Neuro2A cells. Biochemical and Biophysical Research Communications, 435, 113119.
Myohanen T. T., Hannula M. J., Van E. R., Gerard M., Van D. V., Garcia-Horsman J. A., . . . Lambeir A. M. (2012). A prolyl oligopeptidase inhibitor, KYP-2047, reduces alpha-synuclein protein levels and aggregates in cellular and animal models of Parkinson's disease. British Journal of Pharmacology, 166, 10971113.
Nestor P. G. (2002). Mental disorder and violence: Personality dimensions and clinical features. American Journal of Psychiatry, 159, 19731978.
Provencal N., Suderman M. J., Caramaschi D., Wang D., Hallett M., Vitaro F., . . . Szyf M. (2013). Differential DNA methylation regions in cytokine and transcription factor genomic loci associate with childhood physical aggression. PLoS One, 8, e71691.
Provencal N., Suderman M. J., Guillemin C., Massart R., Ruggiero A., Wang D., . . . Szyf M. (2012). The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. Journal of Neuroscience, 32, 1562615642.
Provencal N., Suderman M. J., Guillemin C., Vitaro F., Cote S. M., Hallett M., . . . Szyf M. (2014). Association of childhood chronic physical aggression with a DNA methylation signature in adult human T cells. PLoS One, 9, e89839.
Rao V., Rosenberg P., Bertrand M., Salehinia S., Spiro J., Vaishnavi S., . . . Miles Q. S. (2009). Aggression after traumatic brain injury: Prevalence and correlates. Journal of Neuropsychiatry & Clinical Neurosciences, 21, 2029.
Reik W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447, 425432.
Richmond R. C., Simpkin A. J., Woodward G., Gaunt T. R., Lyttleton O., McArdle W. L., . . . Relton C. L. (2015). Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Human Molecular Genetics, 24, 22012217.
Ripke S., Wray N. R., Lewis C. M., Hamilton S. P., Weissman M. M., Breen G., . . . Sullivan P. F. (2013). A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry, 18, 497511.
Slieker R. C., Bos S. D., Goeman J. J., Bovee J. V., Talens R. P., van der Breggen R., . . . Heijmans B. T. (2013). Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array. Epigenetics & Chromatin, 6, 26.
Suter M., Ma J., Harris A., Patterson L., Brown K. A., Shope C., . . . Aagaard-Tillery K. M. (2011). Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics, 6, 12841294.
Tateno A., Jorge R. E., & Robinson R. G. (2003). Clinical correlates of aggressive behavior after traumatic brain injury. Journal of Neuropsychiatry & Clinical Neurosciences, 15, 155160.
Tobi E. W., Slieker R. C., Stein A. D., Suchiman H. E., Slagboom P. E., van Zwet E. W., . . . Lumey L. H. (2015). Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. International Journal of Epidemiology. 44, 1211–23. doi: 10.1093/ije/dyv043.
Tremblay R. E. (2008). Understanding development and prevention of chronic physical aggression: Towards experimental epigenetic studies. Philosophical Transactions of the Royal Society of London. Series B: Biological Science, 363, 26132622.
Tremblay R. E., Nagin D. S., Seguin J. R., Zoccolillo M., Zelazo P. D., Boivin M., . . . Japel C. (2004). Physical aggression during early childhood: Trajectories and predictors. Pediatrics, 114, e43e50.
van Beijsterveldt C. E., Groen-Blokhuis M., Hottenga J. J., Franic S., Hudziak J. J., Lamb D., . . . Boomsma D. I. (2013). The Young Netherlands Twin Register (YNTR): Longitudinal twin and family studies in over 70,000 children. Twin Research and Human Genetics, 16, 252267.
Van Dongen J., Heijmans B. T., Nivard M. G., Willemsen G., Hottenga J.-J., Helmer Q., . . . Boomsma D. I. (under review). Genetic and environmental influences interact with age and sex in shaping the human methylome.
van Iterson M., Tobi E. W., Slieker R. C., den Hollander W., Luijk R., Slagboom P. E., & Heijmans B. T. (2014). MethylAid: Visual and interactive quality control of large Illumina 450k datasets. Bioinformatics, 30, 34353437.
Volicer L., & Hurley A. C. (2003). Management of behavioral symptoms in progressive degenerative dementias. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58, M837M845.
Wang D., Szyf M., Benkelfat C., Provencal N., Turecki G., Caramaschi D., . . . Booij L. (2012). Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS One, 7, e39501.
Weaver I. C., Cervoni N., Champagne F. A., D’Alessio A. C., Sharma S., Seckl J. R., . . . Meaney M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854.
Willemsen G., de Geus E. J. C., Bartels M., van Beijsterveldt C. E. M., Brooks A. I., Estourgie-van Burk G. F., . . . Boomsma D. I. (2010). The Netherlands twin register biobank: A resource for genetic epidemiological studies. Twin Research and Human Genetics, 13, 231245.
Willemsen G., Vink J. M., Abdellaoui A., den Braber A., van Beek J. H., Draisma H. H., . . .Boomsma D. I. (2013). The Adult Netherlands Twin Register: Twenty-five years of survey and biological data collection. Twin Research and Human Genetics, 16, 271281.
Wong C. C., Meaburn E. L., Ronald A., Price T. S., Jeffries A. R., Schalkwyk L. C., . . . Mill J. (2014). Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Molecular Psychiatry, 19, 495503.
Yeh M. T., Coccaro E. F., & Jacobson K. C. (2010). Multivariate behavior genetic analyses of aggressive behavior subtypes. Behavior Genetics, 40, 603617.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

van Dongen supplementary material
van Dongen supplementary material 4

 Word (73 KB)
73 KB
EXCEL
Supplementary Materials

van Dongen supplementary material
van Dongen supplementary material 3

 Excel (953 KB)
953 KB
EXCEL
Supplementary Materials

van Dongen supplementary material
van Dongen supplementary material 2

 Excel (10 KB)
10 KB
WORD
Supplementary Materials

van Dongen supplementary material
van Dongen supplementary material 1

 Word (99 KB)
99 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 59
Total number of PDF views: 304 *
Loading metrics...

Abstract views

Total abstract views: 623 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.