Skip to main content Accessibility help
×
Home

Genetic and Environmental Factors in Invasive Cervical Cancer: Design and Methods of a Classical Twin Study

  • Dorothy A. Machalek (a1) (a2), John D. Wark (a3), Sepehr N. Tabrizi (a1) (a2) (a4), John L. Hopper (a5), Minh Bui (a5), Gillian S. Dite (a5), Alyssa M. Cornall (a1) (a2) (a4), Marian Pitts (a6), Dorota Gertig (a7), Bircan Erbas (a8) and Suzanne M. Garland (a1) (a2) (a4)...

Abstract

Background: Persistent high-risk human papillomavirus (HPV) infection is a necessary prerequisite for development of cervical cancer and its precursor lesion, high-grade squamous intraepithelial lesion (HSIL). However, HPV infection is not sufficient to drive this process, and genetic and environmental factors may also play a role. Methods/Design: The Cervical Cancer, Genetics and Environment Twin Study was established to investigate the environmental and genetic influences on variation in susceptibility to cervical pre-cancer in 25- to 69-year-old monozygotic (MZ) and dizygotic (DZ) twins recruited through the Australian Twin Registry. Reviews of Papanicolaou (Pap) screening histories were undertaken to identify individual women with a history of an abnormal Pap test. This was followed by detection of HPV in archival Pap smears of selected twin pairs to determine HPV persistence. Selected twin pairs also completed a detailed questionnaire on socio-demographic characteristics, sexual behavior, and HPV knowledge. In future analyses, under the assumptions of the classical twin design, case-wise concordance for persistent HPV infection and HSIL will be calculated for MZ and DZ twin pairs, and twin pairs (both MZ and DZ) who are discordant for the above outcomes will be used to assess the contributions of measured environmental risk factors. Discussion: The study examines factors related to HPV persistence and development of HSIL among female MZ and DZ twins. The results will contribute to our understanding of the natural history of cervical HPV infection and the relative contributions of genetic and environmental factors in disease progression.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Genetic and Environmental Factors in Invasive Cervical Cancer: Design and Methods of a Classical Twin Study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Genetic and Environmental Factors in Invasive Cervical Cancer: Design and Methods of a Classical Twin Study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Genetic and Environmental Factors in Invasive Cervical Cancer: Design and Methods of a Classical Twin Study
      Available formats
      ×

Copyright

Corresponding author

address for correspondence: Dr Dorothy Machalek, Department of Microbiology and Infectious Diseases, The Royal Women's Hospital, Melbourne VIC 3052, Australia. E-mail: dorothy.machalek@mcri.edu.au

References

Hide All
Boomsma, D., Busjahn, A., & Peltonen, L. (2002). Classical twin studies and beyond. Nature Reviews Genetics, 3, 872882.
Bouvard, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., El Ghissassi, F., . . . Cogliano, V. (2009). A review of human carcinogens — Part B: Biological agents. Lancet Oncology, 10, 321322.
Buck, C. B., Pastrana, D. V., Lowy, D. R., & Schiller, J. T. (2005). Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods in Molecular Medicine, 119, 445462.
Carreira, H., Coutinho, F., Carrilho, C., & Lunet, N. (2013). HIV and HPV infections and ocular surface squamous neoplasia: Systematic review and meta-analysis. British Journal of Cancer, 109, 19811988.
Castle, P. E., de Sanjose, S., Qiao, Y. L., Belinson, J. L., Lazcano-Ponce, E., & Kinney, W. (2012). Introduction of human papillomavirus DNA screening in the world: 15 years of experience. Vaccine, 30 (Suppl. 5), F117–122.
Castle, P. E., Rodriguez, A. C., Burk, R. D., Herrero, R., Wacholder, S., Hildesheim, A., . . . Proyecto Epidemiologico Guanacaste Group. (2011). Long-term persistence of prevalently detected human papillomavirus infections in the absence of detectable cervical precancer and cancer. Journal of Infectious Diseases, 203, 814822.
Castle, P. E., Schiffman, M., Herrero, R., Hildesheim, A., Rodriguez, A. C., Bratti, M. C., . . . Burk, R. D. (2005). A prospective study of age trends in cervical human papillomavirus acquisition and persistence in Guanacaste, Costa Rica. Journal of Infectious Diseases, 191, 18081816.
Chen, D., Cui, T., Ek, W. E., Liu, H., Wang, H., & Gyllensten, U. (2015). Analysis of the genetic architecture of susceptibility to cervical cancer indicates that common SNPs explain a large proportion of the heritability. Carcinogenesis, 36, 992998.
Chen, D., & Gyllensten, U. (2015). Lessons and implications from association studies and post-GWAS analyses of cervical cancer. Trends in Genetics, 31, 4154.
Chua, K. L., & Hjerpe, A. (1996). Persistence of human papillomavirus (HPV) infections preceding cervical carcinoma. Cancer, 77, 121127.
Clifford, C. A., & Hopper, J. L. (1986). The Australian NHMRC Twin Registry. A resource for the Australian scientific community. Medical Journal of Australia, 145, 6365.
Cornall, A. M., Roberts, J. M., Garland, S. M., Hillman, R. J., Grulich, A. E., & Tabrizi, S. N. (2013). Anal and perianal squamous carcinomas and high-grade intraepithelial lesions exclusively associated with ‘low-risk’ HPV genotypes 6 and 11. International Journal of Cancer, 133, 22532258.
Cornall, A. M., Roberts, J. M., Molano, M., Machalek, D. A., Phillips, S., Hillman, R. J., . . . Team, S. S. (2015). Laser capture microdissection as a tool to evaluate human papillomavirus genotyping and methylation as biomarkers of persistence and progression of anal lesions. BMJ Open, 5, e008439.
Czene, K., Lichtenstein, P., & Hemminki, K. (2002). Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish family-cancer database. International Journal of Cancer, 99, 260266.
de Abreu, A. L., Malaguti, N., Souza, R. P., Uchimura, N. S., Ferreira, E. C., Pereira, M. W., . . . Consolaro, M. E. (2016). Association of human papillomavirus, Neisseria gonorrhoeae and Chlamydia trachomatis co-infections on the risk of high-grade squamous intraepithelial cervical lesion. American Journal of Cancer Research, 6, 13711383.
De Vuyst, H., Clifford, G. M., Nascimento, M. C., Madeleine, M. M., & Franceschi, S. (2009). Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: A meta-analysis. International Journal of Cancer, 124, 16261636.
Goldberg, J., & Fischer, M. (2005). Co-twin control methods. In Everitt, Brian S. & Howell, David C. (Eds.), Encyclopedia of statistics in behavioral science. New York: John Wiley & Sons http://onlinelibrary.wiley.com/doi/10.1002/0470013192.bsa143/full.
Griffin, H., & Doorbar, J. (2016). Detection of papillomavirus gene expression patterns in tissue sections. Current Protocols in Microbiology, 41, 14B17.1114B17.20.
Guo, S. W. (2001). Does higher concordance in monozygotic twins than in dizygotic twins suggest a genetic component?. Human Heredity, 51, 121132.
Hopper, J. L., Derrick, P. L., & Clifford, C. A. (1987). Innovations in the statistical analysis of twin studies. Acta Geneticae Medicae et Gemellologiae (Roma), 36, 2127.
Jensen, K. E., Schmiedel, S., Norrild, B., Frederiksen, K., Iftner, T., & Kjaer, S. K. (2013). Parity as a cofactor for high-grade cervical disease among women with persistent human papillomavirus infection: A 13-year follow-up. British Journal of Cancer, 108, 234239.
Kapeu, A. S., Luostarinen, T., Jellum, E., Dillner, J., Hakama, M., Koskela, P., . . . Lehtinen, M. (2009). Is smoking an independent risk factor for invasive cervical cancer? A nested case-control study within Nordic biobanks. American Journal of Epidemiology, 169, 480488.
Kleter, B., van Doorn, L. J., Schrauwen, L., Molijn, A., Sastrowijoto, S., ter Schegget, J., . . . Quint, W. (1999). Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. Journal of Clinical Microbiology, 37, 25082517.
Kyrgiou, M., Mitra, A., & Moscicki, A. B. (2016). Does the vaginal microbiota plays a role in the development of cervical cancer? Translational Research, S1931–5244, 3010930118.
Lee, J. E., Lee, S., Lee, H., Song, Y. M., Lee, K., Han, M. J., . . . Ko, G. (2013). Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS One, 8, e63514.
Lowy, D. R., Herrero, R., Hildesheim, A., for the Participants in the IARC/NCI Workshop on Primary Endpoints for Prophylactic HPV Vaccine Trials. (2015). Primary endpoints for future prophylactic human papillomavirus vaccine trials: Towards infection and immunobridging. Lancet Oncology, 16, e226–233.
Magnusson, P. K., Lichtenstein, P., & Gyllensten, U. B. (2000). Heritability of cervical tumours. International Journal of Cancer, 88, 698701.
Martin, N. G., Eaves, L. J., Kearsey, M. J., & Davies, P. (1978). The power of the classical twin study. Heredity (Edinburgh), 40, 97116.
Martinez-Nava, G. A., Fernandez-Nino, J. A., Madrid-Marina, V., & Torres-Poveda, K. (2016). Cervical cancer genetic susceptibility: A systematic review and meta-analyses of recent evidence. PLoS One, 11, e0157344.
Mitra, A., MacIntyre, D. A., Lee, Y. S., Smith, A., Marchesi, J. R., Lehne, B., . . . Kyrgiou, M. (2015). Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Scientific Reports, 5, 16865.
Moore, E. E., Wark, J. D., Hopper, J. L., Erbas, B., Garland, S. M., & CeCaGeEn Study, G. (2012). The roles of genetic and environmental factors on risk of cervical cancer: A review of classical twin studies. Twin Research and Human Genetics, 15, 7986.
Pastrana, D. V., Buck, C. B., Lowy, D. R., & Schiller, J. T. (n.d.). Papillomavirus neutralization assay. Retrieved October 7, 2015, from http://home.ccr.cancer.gov/LCO/neutralizationassay.htm
Pitts, M. K., Dyson, S. J., Rosenthal, D. A., & Garland, S. M. (2007). Knowledge and awareness of human papillomavirus (HPV): Attitudes towards HPV vaccination among a representative sample of women in Victoria, Australia. Sex Health, 4, 177180.
Rodriguez, A. C., Schiffman, M., Herrero, R., Hildesheim, A., Bratti, C., Sherman, M. E., . . . Burk, R. D. (2010). Longitudinal study of human papillomavirus persistence and cervical intraepithelial neoplasia grade 2/3: Critical role of duration of infection. Journal of the National Cancer Institute, 102, 315324.
Ronco, G., Dillner, J., Elfstrom, K. M., Tunesi, S., Snijders, P. J., Arbyn, M., . . . Meijer, M. D. for the International HPV Screening Working Group. (2014). Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet, 383, 524532.
Samoff, E., Koumans, E. H., Markowitz, L. E., Sternberg, M., Sawyer, M. K., Swan, D., . . . Unger, E. R. (2005). Association of Chlamydia trachomatis with persistence of high-risk types of human papillomavirus in a cohort of female adolescents. American Journal of Epidemiology, 162, 668675.
Schiffman, M., Wheeler, C. M., Castle, P. E., & A typical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesion Triage Study Group. (2002). Human papillomavirus DNA remains detectable longer than related cervical cytologic abnormalities. Journal of Infectious Diseases, 186, 11691172.
Smith, A. M., Rissel, C. E., Richters, J., Grulich, A. E., & de Visser, R. O. (2003a). Sex in Australia: Reproductive experiences and reproductive health among a representative sample of women. Australian and New Zealand Journal of Public Health, 27, 204209.
Smith, A. M., Rissel, C. E., Richters, J., Grulich, A. E., & de Visser, R. O. (2003b). Sex in Australia: The rationale and methods of the Australian study of health and relationships. Australian and New Zealand Journal of Public Health, 27, 106117.
Smith, A., Lyons, A., Pitts, M., Croy, S., Ryall, R., Garland, S., . . . Tay, E. H. (2009). Assessing knowledge of human papillomavirus and collecting data on sexual behavior: Computer assisted telephone versus face to face interviews. BMC Public Health, 9, 429.
Smith, B. C., McAndrew, T., Chen, Z., Harari, A., Barris, D. M., Viswanathan, S., . . . Burk, R. D. (2012). The cervical microbiome over 7 years and a comparison of methodologies for its characterization. PLoS One, 7, e40425.
Stevens, M. P., Garland, S. M., & Tabrizi, S. N. (2008). Development and validation of a real-time PCR assay specifically detecting human papillomavirus 52 using the Roche LightCycler 480 system. Journal of Virological Methods, 147, 290296.
Syrjanen, K. (2011). Persistent high-risk human papillomavirus (HPV) infections as surrogate endpoints of progressive cervical disease. Potential new endpoint for efficacy studies with new-generation (non-HPV 16/18) prophylactic HPV vaccines. European Journal of Gynaecological Oncology, 32, 1733.
Syrjanen, K., Vayrynen, M., Castren, O., Yliskoski, M., Mantyjarvi, R., Pyrhonen, S., & Saarikoski, S. (1984). Sexual behaviour of women with human papillomavirus (HPV) lesions of the uterine cervix. British Journal of Venereal Diseases, 60, 243248.
Tabrizi, S. N., Taylor, N., McCullough, M. J., Phillips, G., Wark, J., Gertig, D., . . . CeCaGeEn Study, G. (2010). Human papillomavirus genotype detection from archival papanicolaou-stained cervical tests. Cancer Cytopathology, 118, 482489.
Treloar, S. A., McDonald, C. A., & Martin, N. G. (1999). Genetics of early cancer detection behaviours in Australian female twins. Twin Research, 2, 3342.
van Dongen, J., Slagboom, P. E., Draisma, H. H., Martin, N. G., & Boomsma, D. I. (2012). The continuing value of twin studies in the omics era. Nature Reviews Genetics, 13, 640653.
Velentzis, L. S., Sitas, F., O'Connell, D. L., Darlington-Brown, J., Egger, S., Sinha, R., . . . Canfell, K. (2014). Human papillomavirus 16/18 seroprevalence in unvaccinated women over 30 years with normal cytology and with high grade cervical abnormalities in Australia: Results from an observational study. BMC Infectious Diseases, 14, 3861.
Wang, S. S., Zuna, R. E., Wentzensen, N., Dunn, S. T., Sherman, M. E., Gold, M. A., . . . Walker, J. L. (2009). Human papillomavirus cofactors by disease progression and human papillomavirus types in the study to understand cervical cancer early endpoints and determinants. Cancer Epidemiology, Biomarkers & Prevention, 18, 113120.
Witte, J. S., Carlin, J. B., & Hopper, J. L. (1999). Likelihood-based approach to estimating twin concordance for dichotomous traits. Genetic Epidemiology, 16, 290304.
Zelmanowicz Ade, M., Schiffman, M., Herrero, R., Goldstein, A. M., Sherman, M. E., Burk, R. D., . . . Hildesheim, A. (2005). Family history as a co-factor for adenocarcinoma and squamous cell carcinoma of the uterine cervix: Results from two studies conducted in Costa Rica and the United States. International Journal of Cancer, 116, 599605.

Keywords

Related content

Powered by UNSILO

Genetic and Environmental Factors in Invasive Cervical Cancer: Design and Methods of a Classical Twin Study

  • Dorothy A. Machalek (a1) (a2), John D. Wark (a3), Sepehr N. Tabrizi (a1) (a2) (a4), John L. Hopper (a5), Minh Bui (a5), Gillian S. Dite (a5), Alyssa M. Cornall (a1) (a2) (a4), Marian Pitts (a6), Dorota Gertig (a7), Bircan Erbas (a8) and Suzanne M. Garland (a1) (a2) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.