Skip to main content Accessibility help
×
×
Home

Hair Cortisol and Its Association With Psychological Risk Factors for Psychiatric Disorders: A Pilot Study in Adolescent Twins

  • Liz Rietschel (a1), Fabian Streit (a2), Gu Zhu (a3), Kerrie McAloney (a3), Clemens Kirschbaum (a4), Josef Frank (a2), Narelle K. Hansell (a3) (a5), Margaret J. Wright (a3) (a5), John J. McGrath (a5), Stephanie H. Witt (a2), Marcella Rietschel (a2) and Nicholas G. Martin (a3)...
Abstract

Measuring cortisol in hair is a promising method to assess long-term alterations of the biological stress response system, and hair cortisol concentrations (HCC) may be altered in psychiatric disorders and in subjects suffering from chronic stress. However, the pattern of associations between HCC, chronic stress and mental health require clarification. Our exploratory study: (1) assessed the association between HCC and perceived stress, symptoms of depression and neuroticism, and the trait extraversion (as a control variable); and (2) made use of the twin design to estimate the genetic and environmental covariance between the variables of interest. Hair samples from 109 (74 female) subjects (age range 12–21 years, mean 15.1) including 8 monozygotic (MZ) and 21 dizygotic (DZ) twin pairs were analyzed. Perceived stress was measured with the Perceived Stress Scale and/or the Daily Life and Stressors Scale, neuroticism, and extraversion with the NEO-Five Factor Inventory or the Junior Eysenck Personality Questionnaire, and depressive symptoms with the Somatic and Psychological Health Report. We found a modest positive association between HCC and the three risk factors — perceived stress, symptoms of depression, and neuroticism (r = 0.22–0.33) — but no correlation with extraversion (-0.06). A median split revealed that the associations between HCC and risk factors were stronger (0.47–0.60) in those subjects with HCC >11.36 pg/mg. Furthermore, our results suggest that the genetic effects underlying HCC are largely shared with those that influence perceived stress, depressive symptoms, and neuroticism. These results of our proof of principle study warrant replication in a bigger sample but raise the interesting question of the direction of causation between these variables.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Hair Cortisol and Its Association With Psychological Risk Factors for Psychiatric Disorders: A Pilot Study in Adolescent Twins
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Hair Cortisol and Its Association With Psychological Risk Factors for Psychiatric Disorders: A Pilot Study in Adolescent Twins
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Hair Cortisol and Its Association With Psychological Risk Factors for Psychiatric Disorders: A Pilot Study in Adolescent Twins
      Available formats
      ×
Copyright
Corresponding author
address for correspondence: Liz Rietschel, Child and Adolescent Psychiatry, University Psychiatric Hospital, Bern, Switzerland. E-mail: liz.rietschel@kjp.unibe.ch
References
Hide All
Bartels, M., Van den Berg, M., Sluyter, F., Boomsma, D. I., & de Geus, E. J. C. (2003). Heritability of cortisol levels: Review and simultaneous analysis of twin studies. Psychoneuroendocrinology, 28, 121137.
Blokland, G. A., McMahon, K. L., Hoffman, J., Zhu, G., Meredith, M., Martin, N. G., . . . Wright, M. J. (2008). Quantifying the heritability of task-related brain activation and performance during the N-back working memory task: A twin fMRI study. Biological Psychology, 79, 7079.
Bradley, A. J., & Dinan, T. G. (2010). A systematic review of hypothalamic-pituitary-adrenal axis function in schizophrenia: Implications for mortality. Journal of Psychopharmacology, 24, 91118.
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24, 385396.
Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A., & Meyer, J. S. (2006). Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. General and Comparative Endocrinology, 147, 255261.
Dedovic, K., Duchesne, A., Andrews, J., Engert, V., & Pruessner, J. C. (2009). The brain and the stress axis: The neural correlates of cortisol regulation in response to stress. Neuroimage, 47, 864871.
de Kloet, E. R., Joels, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6, 463475.
Eysenck, S. G. (1972). Junior eysenck personality inventory. San Diego, CA: Educational and Industrial Testing Service (EdITS).
Fairbanks, L. A., Jorgensen, M. J., Bailey, J. N., Breidenthal, S. E., Grzywa, R., & Laudenslager, M. L. (2011). Heritability and genetic correlation of hair cortisol in vervet monkeys in low and higher stress environments. Psychoneuroendocrinology, 36, 12011208.
Faravelli, C., Lo Sauro, C., Lelli, L., Pietrini, F., Lazzeretti, L., Godini, L., & Ricca, V. (2012). The role of life events and HPA axis in anxiety disorders: A review. Current Pharmaceutical Design, 18, 56635674.
Hansell, N. K., Wright, M. J., Medland, S. E., Davenport, T. A., Wray, N. R., Martin, N. G., & Hickie, I. B. (2012). Genetic co-morbidity between neuroticism, anxiety/depression and somatic distress in a population sample of adolescent and young adult twins. Psychological Medicine, 42, 12491260.
Heinze, K., Lin, A., Reniers, R. L. E. P., & Wood, S. J. (2016). Longer-term increased cortisol levels in young people with mental health problems. Psychiatry Research, 236, 98104.
Herane Vives, A., De Angel, V., Papadopoulos, A., Strawbridge, R., Wise, T., Young, A. H., & Cleare, A. J. (2015). The relationship between cortisol, stress and psychiatric illness: New insights using hair analysis. Journal of Psychiatric Research, 70, 3849.
Herbert, J. (2013). Cortisol and depression: Three questions for psychiatry. Psychological Medicine, 43, 449469.
Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., Choi, D. C., & Cullinan, W. E. (2003). Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Frontiers in Neuroendocrinology, 24, 151180.
Hickie, I. B., Davenport, T. A., Hadzi-Pavlovic, D., Koschera, A., Naismith, S. L., Scott, E. M., & Wilhelm, K. A. (2001). Development of a simple screening tool for common mental disorders in general practice. The Medical Journal of Australia, 175, S10–17.
Jones, T., & Moller, M. D. (2011). Implications of hypothalamic-pituitary-adrenal axis functioning in posttraumatic stress disorder. Journal of the American Psychiatric Nurses Association, 17, 393403.
Kearney, C. A., Drabman, R. S., & Beasley, J. F. (1993). The trials of childhood: The development, reliability, and validity of the daily life stressors scale. Journal of Child and Family Studies, 2, 371388.
Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2006). Personality and major depression: A Swedish longitudinal, population-based twin study. Archives of General Psychiatry, 63, 11131120.
Kirschbaum, C., Tietze, A., Skoluda, N., & Dettenborn, L. (2009). Hair as a retrospective calendar of cortisol production-Increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology, 34, 3237.
LeBeau, M. A., Montgomery, M. A., & Brewer, J. D. (2011). The role of variations in growth rate and sample collection on interpreting results of segmental analyses of hair. Forensic Science International, 210, 110116.
Lesch, K. P. (2004). Gene environment interaction and the genetics of depression. Journal of Psychiatry & Neuroscience, 29 (3), 174184.
Martin, N. G., & Martin, P. G. (1975). The inheritance of scholastric abilities in a sample of twins. I. Ascertainments of the sample and diagnosis of zygosity. Annals of Human Genetics, 39, 213218.
McCrae, R. R., & Costa, P. T. Jr (2004). A contemplated revision of the NEO Five-Factor Inventory. Personality and Individual Differences, 36, 587596.
Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological Bulletin, 133, 2545.
Munafò, M. R., Lee, L., Ayres, R., Flint, J., Goodwin, G., & Harmer, C. J. (2006). Early morning salivary cortisol is not associated with extraversion. Personality and Individual Differences, 40 (2), 395400.
Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2004). Mx: statistical modeling (6th ed.,). Richmond, VA: Department of Psychiatry, Virginia Commonwealth University.
Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Dordrecht, Netherlands: Springer.
Richmond, R. C., Sharp, G. C., Ward, M. E., Fraser, A., Lyttleton, O., McArdle, W. L., & Relton, C. L. (2016). DNA methylation and body mass index: Investigating identified methylation sites at HIF3A in a causal framework. Diabetes, 65, 12311244.
Rietschel, L., Zhu, G., Kirschbaum, C., Strohmaier, J., Wüst, S., Rietschel, M., & Martin, N. G. (2014). Perceived stress has genetic influences distinct from neuroticism and depression. Behavior Genetics, 44, 639645.
Rippe, R. C. A., Noppe, G., Windhorst, D. A., Tiemeier, H., van Rossum, E. F. C., Jaddoe, V. W. V., . . . van den Akker, E. L. T. (2016). Splitting hair for cortisol? Associations of socio-economic status, ethnicity, hair color, gender and other child characteristics with hair cortisol and cortisone. Psychoneuroendocrinology, 66, 5664.
Simmons, J. G., Badcock, P. B., Whittle, S. L., Byrne, M. L., Mundy, L., Patton, G. C., . . . Allen, N. B. (2016). The lifetime experience of traumatic events is associated with hair cortisol concentrations in community-based children. Psychoneuroendocrinology, 63, 276281.
Singhal, N., & Saha, A. (2014). Bedside biomarkers in pediatric cardio renal injuries in emergency. International Journal of Critical Illness and Injury Science, 4, 238246.
Streit, F., Memic, A., Hasandedić, L., Rietschel, L., Frank, J., Lang, M., Rietschel, M. (2016). Perceived stress and hair cortisol: Differences in bipolar disorder and schizophrenia. Psychoneuroendocrinology, 69, 2634.
Stalder, T., Steudte, S., Miller, R., Skoluda, N., Dettenborn, L., & Kirschbaum, C. (2012). Intraindividual stability of hair cortisol concentrations. Psychoneuroendocrinology, 37, 602610.
Staufenbiel, S. M., Penninx, B. W. J. H., Spijker, A. T., Elzinga, B. M., & van Rossum, E. F. C. (2013). Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology, 38, 12201235.
Vanaelst, B., De Vriendt, T., Huybrechts, I., Rinaldi, S., De Henauw, S. (2012). Epidemiological approaches to measure childhood stress. Paediatric and Perinatal Epidemiology, 26, 280297.
Van Os, J., & Jones, P. B. (2001). Neuroticism as a risk factor for schizophrenia. Psychological Medicine, 31, 11291134.
Van Os, J., Rutten, B. P., & Poulton, R. (2008). Gene-environment interactions in schizophrenia: Review of epidemiological findings and future directions. Schizophrenia Bulletin, 34, 10661082.
Vliegenthart, J., Noppe, G., van Rossum, E. F. C., Koper, J. W., Raat, H., & van den Akker, E. L. T. (2016). Socioeconomic status in children is associated with hair cortisol levels as a biological measure of chronic stress. Psychoneuroendocrinology, 65, 914.
Wells, S., Tremblay, P. F., Flynn, A., Russell, E., Kennedy, J., Rehm, J., & Graham, K. (2014). Associations of hair cortisol concentration with self-reported measures of stress and mental health-related factors in a pooled database of diverse community samples. Stress, 17, 334342.
Wilson, M.C., Zilioli, S., Ponzi, D., Henry, A., Kubicki, K., Nickels, N., & Maestripieri, D. (2015).Cortisol reactivity to psychosocial stress mediates the relationship between extraversion and unrestricted sociosexuality. Personality and Individual Differences, 86, 427431.
Wray, N. R., Coventry, W. L., James, M. R., Montgomery, G. W., Eaves, L. J., & Martin, N. G. (2008). Use of monozygotic twins to investigate the relationship between 5HTTLPR genotype, depression and stressful life events: An application of Item Response Theory. Novartis Foundation Symposium, 293, 4859; discussion 59–70.
Wright, M., & Martin, N. G. (2004). Brisbane adolescent twin study: Outline of study methods and research projects. Australian Journal of Psychology, 56, 6578.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed