Skip to main content
×
Home
    • Aa
    • Aa

The Heritability of Breast Cancer: A Bayesian Correlated Frailty Model Applied to Swedish Twins Data

  • Isabella Locatelli (a1), Paul Lichtenstein (a2) and Anatoli I. Yashin (a3)
Abstract
Abstract

The aim of this study was to investigate the role of genes and environment in susceptibility to breast cancer and to give an estimate of heritability in the propensity to develop the disease. To do this we applied an interdisciplinary approach, merging models developed in the field of demography and survival analysis — so-called frailty models — and models coming from quantitative genetics and epidemiology, namely genetic models. In our study, the inferential problem was solved in a Bayesian framework and the numerical work was carried out using MCMC methods. We used the special information coming from twin data, particularly breast cancer data, from the Swedish Twin Register. The application of a correlated log-normal frailty model leads to a very large estimate of the population heterogeneity (σ = 6.7), and relatively small correlations between co-twins' frailties — around 0.3 for monozygotic and 0.1 for dizygotic twins. Comparing three different genetic models (an ACE, an AE and an ADE model), we furthermore concluded that genetic effects would explain globally almost 30% of the total variability of propensity to breast cancer. Environmental effects would be predominant in determining breast cancer susceptibility and these effects would be primarily individual-specific, that is, non-shared effects. Finally, a model which includes dominance genetic effects (ADE model) is preferred for genetic and statistical reasons.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Heritability of Breast Cancer: A Bayesian Correlated Frailty Model Applied to Swedish Twins Data
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      The Heritability of Breast Cancer: A Bayesian Correlated Frailty Model Applied to Swedish Twins Data
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      The Heritability of Breast Cancer: A Bayesian Correlated Frailty Model Applied to Swedish Twins Data
      Available formats
      ×
Copyright
Corresponding author
*Address for correspondence: Isabella Locatelli, Via Mincio 30, 20139 MILANO, Italy.*
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 64 *
Loading metrics...

Abstract views

Total abstract views: 145 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th May 2017. This data will be updated every 24 hours.