Skip to main content
×
Home

Heritability of Multivariate Gray Matter Measures in Schizophrenia

  • Jessica A. Turner (a1) (a2), Vince D. Calhoun (a1) (a3), Andrew Michael (a1), Theo G. M. van Erp (a4), Stefan Ehrlich (a5) (a6), Judith M. Segall (a1), Randy L. Gollub (a6), John Csernansky (a7), Steven G. Potkin (a4), Beng-Choon Ho (a8), Juan Bustillo (a9), S. Charles Schulz (a10), FBIRN (a4) and Lei Wang (a7)...
Abstract

Structural brain measures are employed as endophenotypes in the search for schizophrenia susceptibility genes. We analyzed two independent structural imaging datasets with voxel-based morphometry and with source-based morphometry, a multivariate, independent components analysis, to determine the stability and heritability of regional gray matter concentration abnormalities in schizophrenia. The samples comprised 209 and 102 patients with schizophrenia and 208 and 96 healthy volunteers, respectively. The second sample additionally included non-ill siblings of participants with and without schizophrenia. A standard voxel-based analysis showed reproducible regional gray matter deficits in the affected participants compared with unrelated, unaffected controls in both datasets: patients showed significant gray matter concentration deficits in cortical frontal, temporal, and insular lobes. Source-based morphometry (SBM) was applied to the gray matter images of the entire sample to determine the effects of diagnosis on networks of covarying structures. The SBM analysis extracted 24 significant sets of covarying regions (components). Four of these components showed significantly lower gray matter concentrations in patients (p < .05). We determined the familiality of the observed SBM components based on 66 sibling pairs (25 discordant for schizophrenia). Two components, one including the medial frontal, insular, inferior frontal, and temporal lobes, and the other including the posterior occipital lobe, showed significant familiality (p < .05). We conclude that structural brain deficits in schizophrenia are replicable, and that SBM can extract unique familial and likely heritable components. SBM provides a useful data reduction technique that can provide measures that may serve as endophenotypes for schizophrenia.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Heritability of Multivariate Gray Matter Measures in Schizophrenia
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Heritability of Multivariate Gray Matter Measures in Schizophrenia
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Heritability of Multivariate Gray Matter Measures in Schizophrenia
      Available formats
      ×
Copyright
Corresponding author
address for correspondence: Jessica A. Turner, Mind Research Network, 1101 Yale Blvd NE, Albuquerque NM 87106, USA E-mail: Jturner@mrn.org
References
Hide All
Almasy L., & Blangero J. (1998). Multipoint quantitative-trait linkage analysis in general pedigrees. American Journal of Human Genetics, 62, 11981211.
Andreasen N. C. (1984a). Modified scale for the assessment of negative symptoms (SANS). Iowa City: University of Iowa.
Andreasen N. C. (1984b). Scale for the assessment of positive symptoms (SAPS). Iowa City: University of Iowa.
Andreasen N. C. (1989). Psych-base. Iowa City: University of Iowa.
Andreasen N. C., Pressler M., Nopoulos P., Miller D., & Ho B. C. (2010). Antipsychotic dose equivalents and dose-years: A standardized method for comparing exposure to different drugs. Biological Psychiatry, 67, 255262.
Antonova E., Sharma T., Morris R., & Kumari V. (2004). The relationship between brain structure and neurocognition in schizophrenia: A selective review. Schizophrenia Research, 70, 117145.
Ashburner J., & Friston K. J. (2000). Voxel-based morphometry—the methods. Neuroimage, 11, 805821.
Bartley A. J., Jones D. W., & Weinberger D. R. (1997). Genetic variability of human brain size and cortical gyral patterns. Brain, 120, 257269.
Bearden C. E., van Erp T. G., Thompson P. M., Toga A. W., & Cannon T. D. (2007). Cortical mapping of genotype-phenotype relationships in schizophrenia. Human Brain Mapping, 28, 519532.
Blair J. R., & Spreen O. (1989). Predicting premorbid IQ: A revision of the national adult reading test. Clinical Neuropsychologist, 3, 129136.
Boonstra G., van Haren N. E., Schnack H. G., Cahn W., Burger H., Boersma M., de Kroon B., Grobbee D. E., Hulshoff Pol H. E., & Kahn R. S. (2011). Brain volume changes after withdrawal of atypical antipsychotics in patients with first-episode schizophrenia. Journal of Clinical Psychopharmacology, 31, 146153.
Boos H. B., Aleman A., Cahn W., Hulshoff Pol H., & Kahn R. S. (2007). Brain volumes in relatives of patients with schizophrenia: A meta-analysis. Archives of General Psychiatry, 64, 297304.
Calabrese D. R., Wang L., Harms M. P., Ratnanather J. T., Barch D. M., Cloninger C. R., Thompson P. A., Miller M. I., & Csernansky J. G. (2008). Cingulate gyrus neuroanatomy in schizophrenia subjects and their non-psychotic siblings. Schizophrenia Research, 104, 6170.
Chen L. S., Rice T. K., Thompson P. A., Barch D. M., & Csernansky J. G. (2009). Familial aggregation of clinical and neurocognitive features in sibling pairs with and without schizophrenia. Schizophrenia Research, 111, 159166.
Colcombe S. J., Erickson K. I., Scalf P. E., Kim J. S., Prakash R., McAuley E., Elavsky S., Marquez D. X., Hu L., & Kramer A. F. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61, 11661170.
Csernansky J. G., Schindler M. K., Splinter N. R., Wang L., Gado M., Selemon L. D., Rastogi-Cruz D., Posener J. A., Thompson P. A., & Miller M. I. (2004). Abnormalities of thalamic volume and shape in schizophrenia. American Journal of Psychiatry, 161, 896902.
Fennema-Notestine C., Gamst A. C., Quinn B. T., Pacheco J., Jernigan T. L., Thal L., Buckner R., Killiany R., Blacker D., Dale A. M., Fischl B., Dickerson B., & Gollub R. L. (2007). Feasibility of multi-site clinical structural neuroimaging studies of aging using legacy data. Neuroinformatics, 5, 235245.
Flashman L. A., & Green M. F. (2004). Review of cognition and brain structure in schizophrenia: Profiles, longitudinal course, and effects of treatment. The Psychiatric Clinics of North America, 27, 118.
Fornito A., Yucel M., Patti J., Wood S. J., & Pantelis C. (2009). Mapping grey matter reductions in schizophrenia: An anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophrenia Research, 108, 104113.
Giuliani N. R., Calhoun V. D., Pearlson G. D., Francis A., & Buchanan R. W. (2005). Voxel-based morphometry versus region of interest: A comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophrenia Research, 74, 135147.
Glahn D. C., Thompson P. M., & Blangero J. (2007). Neuroimaging endophenotypes: Strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28, 488501.
Goldman A. L., Pezawas L., Mattay V. S., Fischl B., Verchinski B. A., Zoltick B., Weinberger D. R., & Meyer-Lindenberg A. (2008). Heritability of brain morphology related to schizophrenia: A large-scale automated magnetic resonance imaging segmentation study. Biological Psychiatry, 63, 475483.
Gottesman I. I., & Gould T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.
Harms M. P., Wang L., Campanella C., Aldridge K., Moffitt A. J., Kuelper J., Ratnanather J. T., Miller M. I., Barch D. M., & Csernansky J. G. (2010). Structural abnormalities in gyri of the prefrontal cortex in individuals with schizophrenia and their unaffected siblings. British Journal of Psychiatry, 196, 150157.
Harms M. P., Wang L., Mamah D., Barch D. M., Thompson P. A., & Csernansky J. G. (2007). Thalamic shape abnormalities in individuals with schizophrenia and their nonpsychotic siblings. Journal of Neuroscience, 27, 1383513842.
Hartberg C. B., Lawyer G., Nyman H., Jonsson E. G., Haukvik U. K., Saetre P., Bjerkan P. S., Andreassen O. A., Hall H., & Agartz I. (2010). Investigating relationships between cortical thickness and cognitive performance in patients with schizophrenia and healthy adults. Psychiatry Research, 182, 123133.
Hartberg C. B., Sundet K., Rimol L. M., Haukvik U. K., Lange E. H., Nesvag R., Dale A. M., Melle I., Andreassen O. A., & Agartz I. (2011). Brain cortical thickness and surface area correlates of neurocognitive performance in patients with schizophrenia, bipolar disorder, and healthy adults. Journal of the International Neuropsychological Society, 17, 10801093.
Ho B. C., Andreasen N. C., Ziebell S., Pierson R., & Magnotta V. (2011). Long-term antipsychotic treatment and brain volumes: A longitudinal study of first-episode schizophrenia. Archives of General Psychiatry, 68, 128137.
Honea R. A., Crow T. J., Passingham D., & Mackay C. E. (2005). Regional deficits in brain volume in schizophrenia: A meta-analysis of voxel-based morphometry studies. American Journal of Psychiatry, 162, 22332245.
Honea R. A., Meyer-Lindenberg A., Hobbs K. B., Pezawas L., Mattay V. S., Egan M. F., Verchinski B., Passingham R. E., Weinberger D. R., & Callicott J. H. (2008). Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biological Psychiatry, 63, 465474.
Hulshoff Pol H. E., & Kahn R. S. (2008). What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophrenia Bulletin, 34, 354366.
Jagannathan K., Calhoun V. D., Gelernter J., Stevens M. C., Liu J., Bolognani F., Windemuth A., Ruano G., Assaf M., & Pearlson G. D. (2010). Genetic associations of brain structural networks in schizophrenia: A preliminary study. Biological Psychiatry, 68, 657666.
Koutsouleris N., Gaser C., Jager M., Bottlender R., Frodl T., Holzinger S., Schmitt G. J., Zetzsche T., Burgermeister B., Scheuerecker J., Born C., Reiser M., Moller H. J., & Meisenzahl E. M. (2008). Structural correlates of psychopathological symptom dimensions in schizophrenia: A voxel-based morphometric study. Neuroimage, 39, 16006012.
Mamah D., Harms M. P., Wang L., Barch D., Thompson P., Kim J., Miller M. I., & Csernansky J. G. (2008). Basal ganglia shape abnormalities in the unaffected siblings of schizophrenia patients. Biological Psychiatry, 64, 111120.
Marsh L., Sullivan E. V., Morrell M., Lim K. O., & Pfefferbaum A. (2001). Structural brain abnormalities in patients with schizophrenia, epilepsy, and epilepsy with chronic interictal psychosis. Psychiatry Research, 108, 115.
Meda S. A., Giuliani N. R., Calhoun V. D., Jagannathan K., Schretlen D. J., Pulver A., Cascella N., Keshavan M., Kates W., Buchanan R., Sharma T., & Pearlson G. D. (2008). A large scale (N = 400) investigation of gray matter differences in schizophrenia using optimized voxel-based morphometry. Schizophrenia Research, 101, 95105.
Pagnoni G., & Cekic M. (2007). Age effects on gray matter volume and attentional performance in zen meditation. Neurobiology and Aging, 28, 16231627.
Pardoe H., Pell G. S., Abbott D. F., Berg A. T., & Jackson G. D. (2008). Multi-site voxel-based morphometry: Methods and a feasibility demonstration with childhood absence epilepsy. Neuroimage, 42, 611616.
Pell G. S., Briellmann R. S., Chan C. H., Pardoe H., Abbott D. F., & Jackson G. D. (2008). Selection of the control group for vbm analysis: Influence of covariates, matching and sample size. Neuroimage, 41, 13241335.
Puri B. K. (2011). Brain tissue changes and antipsychotic medication. Expert Review of Neurotherapeutics, 11, 943946.
Rice T. K. (2008). Familial resemblance and heritability. Advances in Genetics, 60, 3549.
Rimol L. M., Hartberg C. B., Nesvag R., Fennema-Notestine C., Hagler D. J., Pung C. J. Jr., Jennings R. G., Haukvik U. K., Lange E., Nakstad P. H., Melle I., Andreassen O. A., Dale A. M., & Agartz I. (2010). Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biological Psychiatry, 68, 4150.
Segall J. M., Turner J. A., van Erp T. G., White T., Bockholt H. J., Gollub R. L., Ho B. C., Magnotta V., Jung R. E., McCarley R. W., Schulz S. C., Lauriello J., Clark V. P., Voyvodic J. T., Diaz M. T., & Calhoun V. D. (2009). Voxel-based morphometric multisite collaborative study on schizophrenia. Schizophrenia Bulletin, 35, 8295.
Steen R. G., Mull C., McClure R., Hamer R. M., & Lieberman J. A. (2006). Brain volume in first-episode schizophrenia: Systematic review and meta-analysis of magnetic resonance imaging studies. British Journal of Psychiatry, 188, 510518.
Stonnington C. M., Tan G., Kloppel S., Chu C., Draganski B., Jack C. R., Chen K. Jr., Ashburner J., & Frackowiak R. S. (2008). Interpreting scan data acquired from multiple scanners: A study with Alzheimer's disease. Neuroimage, 39, 11801185.
Sullivan E. V., Pfefferbaum A., Swan G. E., & Carmelli D. (2001). Heritability of hippocampal size in elderly twin men: Equivalent influence from genes and environment. Hippocampus, 11, 754762.
Thompson P. M., Cannon T. D., Narr K. L., van Erp T., Poutanen V. P., Huttunen M., Lonnqvist J., Standertskjold-Nordenstam C. G., Kaprio J., Khaledy M., Dail R., Zoumalan C. I., & Toga A. W. (2001). Genetic influences on brain structure. Nature Neuroscience, 4, 12531258.
Thompson P. M., Cannon T. D., & Toga A. W. (2002). Mapping genetic influences on human brain structure. Annals of Medicine, 34, 523536.
van Erp T. G., Saleh P. A., Huttunen M., Lonnqvist J., Kaprio J., Salonen O., Valanne L., Poutanen V. P., Standertskjold-Nordenstam C. G., & Cannon T. D. (2004). Hippocampal volumes in schizophrenic twins. Archives of General Psychiatry, 61, 346353.
van Haren N. E., Bakker S. C., & Kahn R. S. (2008). Genes and structural brain imaging in schizophrenia. Current Opinion in Psychiatry, 21, 161167.
Xu L., Groth K. M., Pearlson G., Schretlen D. J., & Calhoun V. D. (2009). Source-based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia. Human Brain Mapping, 30, 711724.
Yang Y., Nuechterlein K. H., Phillips O., Hamilton L. S., Subotnik K. L., Asarnow R. F., Toga A. W., & Narr K. L. (2010). The contributions of disease and genetic factors towards regional cortical thinning in schizophrenia: The UCLA family study. Schizophrenia Research, 123, 116125.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 11
Total number of PDF views: 97 *
Loading metrics...

Abstract views

Total abstract views: 268 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.