Skip to main content
×
Home
    • Aa
    • Aa

Holocene Selection for Variants Associated With General Cognitive Ability: Comparing Ancient and Modern Genomes

  • Michael A. Woodley (a1) (a2), Shameem Younuskunju (a3), Bipin Balan (a4) and Davide Piffer (a5)
Abstract

Human populations living during the Holocene underwent considerable microevolutionary change. It has been theorized that the transition of Holocene populations into agrarianism and urbanization brought about culture-gene co-evolution that favored via directional selection genetic variants associated with higher general cognitive ability (GCA). To examine whether GCA might have risen during the Holocene, we compare a sample of 99 ancient Eurasian genomes (ranging from 4.56 to 1.21 kyr BP) with a sample of 503 modern European genomes (Fst = 0.013), using three different cognitive polygenic scores (130 SNP, 9 SNP and 11 SNP). Significant differences favoring the modern genomes were found for all three polygenic scores (odds ratios = 0.92, p = 001; .81, p = 037; and .81, p = .02 respectively). These polygenic scores also outperformed the majority of scores assembled from random SNPs generated via a Monte Carlo model (between 76.4% and 84.6%). Furthermore, an indication of increasing positive allele count over 3.25 kyr was found using a subsample of 66 ancient genomes (r = 0.22, pone-tailed = .04). These observations are consistent with the expectation that GCA rose during the Holocene.

Copyright
Corresponding author
address for correspondence: Michael Woodley of Menie, Center Leo Apostel for Interdisciplinary Studies, Vrije Universiteit Brussel, Brussels, Belgium. E-mail: Michael.Woodley@vub.ac.be
Davide Piffer, Department of Psychology, Ben Gurion University of the Negev, Beer-Sheva, Israel. E-mail: piffer@post.bgu.ac.il
Footnotes
Hide All

Joint first author.

Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature, 526, 6874.

M. E. Allentoft , M. Sikora , K.-G. Sjögren , S. Rasmussen , M. Rasmussen , . . . E. Willerslev (2015). Population genomics of Bronze Age Eurasia. Nature, 522, 167174.

G. A. Barnard (1945). A new test for 2 × 2 tables. Nature, 156, 783784.

G. A. Barnard (1947). Significance tests for 2 × 2 tables. Biometrika, 34, 123138.

J. P. Beauchamp (2016). Genetic evidence for natural selection in humans in the contemporary United States. Proceedings of the National Academy of Sciences of the United States of America, 113, 77747779.

J. J. Berg , & G. Coop (2014). A population genetic signal of polygenic adaptation. PLoS Genetics, 10, e1004412.

A. Bigham , M. Bauchet , D. Pinto , X. Mao , J. M. Akey , . . . M. D. Shriver (2010). Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLOS Genetics, 6, e1001116.

R. D. Boschloo (1970). Raised conditional level of significance for the 2 × 2-table when testing the equality of two probabilities. Statistics Neerlandica, 24, 135.

T. J. Bouchard Jr. (2004). Genetic influence on human psychological traits – A survey. Current Directions in Psychological Science, 13, 148151.

W. S. Bush , & J. H. Moore (2012). Chapter 11: Genome-wide association studies. PLoS Computational Biology, 8, e1002822.

D. Conley , T. Laidley , D. W. Belsky , J. M. Fletcher , J. D. Boardman , & B. J. Domingue (2016). Assortative mating and differential fertility by phenotype and genotype across the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 113, 66476652.

L. J. Cronbach , & P. E. Meehl (1955). Construct validity in psychological tests. Psychological Bulletin, 52, 281302.

G. Davies , R. E. Marioni , D. C. Liewald , W. D. Hill , S. P. Hagenaars , . . . I. J. Deary (2016). Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N = 112151). Molecular Psychiatry, 21, 758767.

G. Davies , A. Tenesa , A. Payton , J. Yang , S. E. Harris , . . . I. J. Deary (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 9961005.

I. J. Deary , S. R. Cox , & S. J. Ritchie (2016). Getting Spearman off the skyhook: One more in a century (since Thomson, 1916) of attempts to vanquish g. Psychological Inquiry, 27, 192199.

M. A. DePristo , E. Banks , R. Poplin , K. V. Garimella , J. R. Maguire , . . . M. J. Daly (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43, 491498.

B. W. Domingue , D. W. Belsky , D. Conley , K. M. Harris , & J. D. Boardman (2015). Polygenic influence on educational attainment. AERA Open, 1, e13.

H. B. F. Fernandes , M. A. Woodley , & J. te Nijenhuis (2014). Differences in cognitive abilities among primates are concentrated on G: Phenotypic and phylogenetic comparisons with two meta-analytical databases. Intelligence, 46, 311322.

P. Frost (2011). Human nature or human natures? Futures, 43, 740748.

M. J. Galsworthy , R. Arden , & C. F. Chabris (2014). Animal models of general cognitive ability for genetic research into cognitive functioning. In D. Finkel & C. A. Reynolds (Eds.), Behavior genetics of cognition across the lifespan (pp. 257278). New York, NY: Springer.

C. Giosan (2006). High-K strategy scale: A measure of the high-K independent criterion of fitness. Evolutionary Psychology, 4, 394405.

J. Hawks , E. T. Wang , G. M. Cochran , H. C. Harpending , & R. K. Moyzis (2007). Recent acceleration of human adaptive evolution. Proceedings of the National Academy of Sciences of the United States of America, 104, 2075320758.

J. Hermisson , & P. S. Pennings (2005). Soft sweeps: Molecular population genetics of adaptation from standing genetic variation. Genetics, 169, 23352352.

D. C. Hoaglin , B. Iglewicz , & J. W. Tukey (1986). Performance of some resistant rules for outlier labeling. Journal of the American Statistical Association, 81, 991999.

H. D. Kimmel (1957). Three criteria for the use of one-tailed tests. Psychological Bulletin, 54, 351353.

A. Kong , E. Banks , R. Poplin , K. V. Garimella , J. R. Maguire , . . . M. J. Daly (2017). Selection against variants in the genome associated with educational attainment. Proceedings of the National Academy of Sciences of the United States of America, 114, E727–E732.

R. Leinonen , R. Akhtar , E. Birney , L. Bower , A. Cedeno-Tárraga , . . . G. Cochrane (2011). The European Nucleotide Archive. Nucleic Acids Research, 39, D28– D31.

R. Lynn , & M. Van Court (2004). New evidence of dysgenic fertility for intelligence in the United States. Intelligence, 32, 193201.

M. J. Machiela , & S. J. Chanock (2015). LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics, 31, 35553557.

R. D. McCracken (1971). Lactase deficiency: An example of dietary evolution. Current Anthropology, 12, 479517.

A. McKenna , M. Hanna , E. Banks , A. Sivachenko , K. Cibulskis , . . . M. A. DePristo (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 12971303.

A. Okbay , J. P. Beauchamp , M. A. Fontana , J. J. Lee , T. H. Pers , . . . D. J. Benjamin (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539542.

T. H. Pers , P. Timshel , & J. N. Hirschhorn (2015). SNPsnap: A web-based tool for identification and annotation of SNPs. Bioinformatics, 31, 418420.

J. Pietschnig , L. Penke , J. M. Wicherts , M. Zeiler , & M. Voracek (2015). Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience & Biobehavioral Reviews, 57, 411432.

D. Piffer (2013). Correlation of the COMT Val158Met polymorphism with latitude and a hunter-gatherer lifestyle suggests culture-gene coevolution and selective pressure on cognition genes due to climate. Anthropological Science, 121, 161171.

D. Piffer (2015). A review of intelligence GWAS hits: Their relationship to country IQ and the issue of spatial autocorrelation. Intelligence, 53, 4350.

C. A. Rietveld , T. Esko , G. Davies , T. H. Pers , P. Turley , . . . P. D. Koellinger (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proceedings of the National Academy of Sciences of the United States America, 111, 1379013794.

C. A. Rietveld , S. E. Medland , J. Derringer , J. Yang , T. Esko , . . . P. D. Koellinger (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340, 14671471.

M. Scutari , I. Mackay , & D. Balding (2016). Using genetic distance to infer the accuracy of genomic prediction. PLOS Genetics, 12, e1006288.

S. Selzam , E. Krapohl , S. von Stumm , P. F. O'Reilly , K. Rimfeld , . . . R. Plomin (2017). Predicting educational achievement from DNA. Molecular Psychiatry, 22, 267272.

R. R. Sokal , N. L. Oden , & C. Wilson (1991). Genetic evidence for the spread of agriculture in Europe by demic diffusion. Nature, 351, 143145.

M. Trzaskowski , N. Harlaar , R. Arden , E. Krapohl , K. Rimfeld , . . . R. Plomin (2014). Genetic influence on family socioeconomic status and children's intelligence. Intelligence, 42, 8388.

M. A. Woodley of Menie , H. B. F. Fernandes , & W. D. Hopkins (2015). The more g-loaded, the more heritable, evolvable, and phenotypically variable: Homology with humans in chimpanzee cognitive abilities. Intelligence, 50, 159163.

M. A. Woodley of Menie , D. Piffer , M. A. Peñaherrera , & H. Rindermann (2016). Evidence of contemporary polygenic selection on the Big G of national cognitive ability: A cross-cultural sociogenetic analysis. Personality & Individual Differences, 102, 9097.

M. A. Woodley of Menie , J. A. Schwartz , & K. M. Beaver (2016). How cognitive genetic factors influence fertility outcomes: A mediational SEM analysis. Twin Research & Human Genetics, 19, 628637.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 2
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 200 *
Loading metrics...

* Views captured on Cambridge Core between 20th July 2017 - 20th August 2017. This data will be updated every 24 hours.