Skip to main content
×
Home

Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass

  • Aileen Bahl (a1), Eija Pöllänen (a2), Khadeeja Ismail (a1), Sarianna Sipilä (a2), Tuija M. Mikkola (a2), Eva Berglund (a3), Carl Mårten Lindqvist (a3), Ann-Christine Syvänen (a3), Taina Rantanen (a2), Jaakko Kaprio (a1) (a4) (a5), Vuokko Kovanen (a2) and Miina Ollikainen (a1)...
Abstract

The loss of estrogen during menopause causes changes in the female body, with wide-ranging effects on health. Estrogen-containing hormone replacement therapy (HRT) leads to a relief of typical menopausal symptoms, benefits bone and muscle health, and is associated with tissue-specific gene expression profiles. As gene expression is controlled by epigenetic factors (including DNA methylation), many of which are environmentally sensitive, it is plausible that at least part of the HRT-associated gene expression is due to changes in DNA methylation profile. We investigated genome-wide DNA methylation and gene expression patterns of white blood cells (WBCs) and their associations with body composition, including muscle and bone measures of monozygotic (MZ) female twin pairs discordant for HRT. We identified 7,855 nominally significant differentially methylated regions (DMRs) associated with 4,044 genes. Of the genes with DMRs, five (ACBA1, CCL5, FASLG, PPP2R2B, and UHRF1) were also differentially expressed. All have been previously associated with HRT or estrogenic regulation, but not with HRT-associated DNA methylation. All five genes were associated with bone mineral content (BMC), and ABCA1, FASLG, and UHRF1 were also associated with body adiposity. Our study is the first to show that HRT associates with genome-wide DNA methylation alterations in WBCs. Moreover, we show that five differentially expressed genes with DMRs associate with clinical measures, including body fat percentage, lean body mass, bone mass, and blood lipids. Our results indicate that at least part of the known beneficial HRT effects on body composition and bone mass may be regulated by DNA methylation associated alterations in gene expression in circulating WBCs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass
      Available formats
      ×
Copyright
Corresponding author
address for correspondence: Miina Ollikainen, PhD, Department of Public Health, PO BOX 41, FI-00014, University of Helsinki, Finland. E-mail miina.ollikainen@helsinki.fi
References
Hide All
Ankarberg-Lindgren C., & Norjavaara E. (2008). A purification step prior to commercial sensitive immunoassay is necessary to achieve clinical usefulness when quantifying serum 17 beta-estradiol in prepubertal children. European Journal of Endocrinology/European Federation of Endocrine Societies, 158, 117124.
Berkyurek A. C., Suetake I., Arita K., Takeshita K., Nakagawa A., Shirakawa M., & Tajima S. (2014). The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA. The Journal of Biological Chemistry, 289, 379386.
Bjornerem A., Straume B., Midtby M., Fonnebo V., Sundsfjord J., Svartberg J., . . . Berntsen G. K. (2004). Endogenous sex hormones in relation to age, sex, lifestyle factors, and chronic diseases in a general population: The tromso study. The Journal of Clinical Endocrinology and Metabolism, 89, 60396047.
Castellano R., Vire B., Pion M., Quivy V., Olive D., Hirsch I., . . . Collette Y. (2006). Active transcription of the human FASL/CD95 L/TNFSF6 promoter region in T lymphocytes involves chromatin remodeling: Role of DNA methylation and protein acetylation suggest distinct mechanisms of transcriptional repression. The Journal of Biological Chemistry, 281, 1471914728.
Cerda A., Issa M. H., Genvigir F. D., Rohde C. B., Cavalli S. A., Bertolami M. C., . . . Hirata R. D. (2013). Atorvastatin and hormone therapy influence expression of ABCA1, APOA1 and SCARB1 in mononuclear cells from hypercholesterolemic postmenopausal women. The Journal of Steroid Biochemistry and Molecular Biology, 138, 403409.
Cheng S., Sipilä S., Taaffe D. R., Puolakka J., & Suominen H. (2002). Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in post-menopausal women. Bone, 31, 126135.
Christodoulakos G. E., Lambrinoudaki I. V., Economou E. V., Papadias C., Vitoratos N., Panoulis C. P., . . . Creatsas G. C. (2007). Circulating chemoattractants RANTES, negatively related to endogenous androgens, and MCP-1 are differentially suppressed by hormone therapy and raloxifene. Atherosclerosis, 193, 142150.
Comasco E., Frokjaer V. G., & Sundstrom-Poromaa I. (2014). Functional and molecular neuroimaging of menopause and hormone replacement therapy. Frontiers in Neuroscience, 8, 388.
Darabi M., Ani M., Panjehpour M., Rabbani M., Movahedian A., & Zarean E. (2011a). Effect of estrogen receptor beta A1730G polymorphism on ABCA1 gene expression response to postmenopausal hormone replacement therapy. Genetic Testing and Molecular Biomarkers, 15, 1115.
Darabi M., Rabbani M., Ani M., Zarean E., Panjehpour M., & Movahedian A. (2011b). Increased leukocyte ABCA1 gene expression in post-menopausal women on hormone replacement therapy. Gynecological Endocrinology, 27, 701705.
Dick K. J., Nelson C. P., Tsaprouni L., Sandling J. K., Aissi D., Wahl S., . . . Samani N. J. (2014). DNA methylation and body-mass index: A genome-wide analysis. Lancet, 383 (9933), 19901998.
Doty R. L., Tourbier I., Ng V., Neff J., Armstrong D., Battistini M., . . . Sondheimer S. J. (2015). Influences of hormone replacement therapy on olfactory and cognitive function in postmenopausal women. Neurobiology of Aging, 36, 20532059.
Fang D., Yang H., Lin J., Teng Y., Jiang Y., Chen J., & Li Y. (2015). 17beta-estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner. Biochemical and Biophysical Research Communications, 457, 500506.
Friso S., Lamon-Fava S., Jang H., Schaefer E. J., Corrocher R., & Choi S. W. (2007). Oestrogen replacement therapy reduces total plasma homocysteine and enhances genomic DNA methylation in postmenopausal women. The British Journal of Nutrition, 97, 617621.
Goodpaster B. H., Kelley D. E., Thaete F. L., He J., & Ross R. (2000). Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. Journal of Applied Physiology, 89, 104110.
Grimby G. (1986). Physical activity and muscle training in the elderly. Acta Medica Scandinavica. Supplementum, 711, 233237.
Heyn H., Li N., Ferreira H. J., Moran S., Pisano D. G., Gomez A., . . . Esteller M. (2012). Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences of the United States of America, 109, 1052210527.
Houseman E. A., Accomando W. P., Koestler D. C., Christensen B. C., Marsit C. J., Nelson H. H., . . . Kelsey K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86.
Irizarry R. A., Ladd-Acosta C., Wen B., Wu Z., Montano C., Onyango P., . . . Feinberg A. P. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41, 178186.
Jin W., Chen L., Chen Y., Xu S. G., Di G. H., Yin W. J., . . . Shao Z. M. (2010). UHRF1 is associated with epigenetic silencing of BRCA1 in sporadic breast cancer. Breast Cancer Research and Treatment, 123, 359373.
Johansson A., Enroth S., & Gyllensten U. (2013). Continuous aging of the human DNA methylome throughout the human lifespan. PloS One, 8, e67378.
Kangas R., Pöllänen E., Rippo M. R., Lanzarini C., Prattichizzo F., Niskala P., . . . Kovanen V. (2014). Circulating miR-21, miR-146 a and fas ligand respond to postmenopausal estrogen-based hormone replacement therapy — A study with monozygotic twin pairs. Mechanisms of Ageing and Development, 143–144, 18.
Kaprio J., & Koskenvuo M. (2002). Genetic and environmental factors in complex diseases: The older finnish twin cohort. Twin Research, 5, 358365.
Kaprio J., Sarna S., Koskenvuo M., & Rantasalo I. (1978). The finnish twin registry: Formation and compilation, questionnaire study, zygosity determination procedures, and research program. Progress in Clinical and Biological Research, 24 Part B, 179184.
Klajic J., Fleischer T., Dejeux E., Edvardsen H., Warnberg F., Bukholm I., . . . Kristensen V. N. (2013). Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors. BMC Cancer, 13, 456.
Knight J. C., Scharf E. L., & Mao-Draayer Y. (2010). Fas activation increases neural progenitor cell survival. Journal of Neuroscience Research, 88, 746757.
Komulainen M., Kroger H., Tuppurainen M. T., Heikkinen A. M., Alhava E., Honkanen R., . . . Saarikoski S. (1999). Prevention of femoral and lumbar bone loss with hormone replacement therapy and vitamin D3 in early postmenopausal women: A population-based 5-year randomized trial. The Journal of Clinical Endocrinology and Metabolism, 84, 546552.
Langdahl B. L. (2009). The genetics of response to estrogen treatment. Clinical Cases in Mineral and Bone Metabolism, 6, 4449.
Lin Q., & Wagner W. (2015). Epigenetic aging signatures are coherently modified in cancer. PLoS Genetics, 11, e1005334.
Mahmutyazicioglu K., Besir F. H., Bardakci M., Tanriverdi H. A., & Ankarali H. (2014). Hormone replacement therapy-related changes in the early postmenopausal period (critical window): An in vivo brain proton magnetic resonance spectroscopy study. Turkish Journal of Medical Sciences, 44, 853861.
Manolopoulos K. N., Karpe F., & Frayn K. N. (2010). Gluteofemoral body fat as a determinant of metabolic health. International Journal of Obesity, 34, 949959.
Marttila S., Kananen L., Hayrynen S., Jylhava J., Nevalainen T., Hervonen A., . . . Hurme M. (2015). Ageing-associated changes in the human DNA methylome: Genomic locations and effects on gene expression. BMC Genomics, 16, 179.
Mikkola T. M., Heinonen A., Kovanen V., Cheng S., Kujala U. M., Suominen H., . . . Sipilä S. (2011). Influence of long-term postmenopausal hormone-replacement therapy on estimated structural bone strength: A study in discordant monozygotic twins. Journal of Bone and Mineral Research, 26, 546552.
Mineo C., & Shaul P. W. (2012). Novel biological functions of high-density lipoprotein cholesterol. Circulation Research, 111, 10791090.
Mor G., Sapi E., Abrahams V. M., Rutherford T., Song J., Hao X. Y., . . . Kohen F. (2003). Interaction of the estrogen receptors with the fas ligand promoter in human monocytes. Journal of Immunology, 170, 114122.
Muggerud A. A., Ronneberg J. A., Warnberg F., Botling J., Busato F., Jovanovic J., . . . Tost J. (2010). Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Research, 12, R3.
Naeem H., Wong N. C., Chatterton Z., Hong M. K., Pedersen J. S., Corcoran N. M., . . . Macintyre G. (2014). Reducing the risk of false discovery enabling identification of biologically significant genome-wide methylation status using the HumanMethylation450 array. BMC Genomics, 15, 51.
Nilsson E., Jansson P. A., Perfilyev A., Volkov P., Pedersen M., Svensson M. K., . . . Ling C. (2014). Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes, 63, 29622976.
Nordlund J., Backlin C. L., Wahlberg P., Busche S., Berglund E. C., Eloranta M. L., . . . Syvanen A. C. (2013). Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biology, 14, 105.
Ollikainen M., Ismail K., Gervin K., Kyllonen A., Hakkarainen A., Lundbom J., . . . Kaprio J. (2015). Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat. Clinical Epigenetics, 7, 39.
Paluszczak J., Hemmerling D., Kostrzewska-Poczekaj M., Jarmuz-Szymczak M., Grenman R., Wierzbicka M., & Baer-Dubowska W. (2014). Frequent hypermethylation of WNT pathway genes in laryngeal squamous cell carcinomas. Journal of Oral Pathology & Medicine, 43, 652657.
Perlman H., Pagliari L. J., Nguyen N., Bradley K., Liu H., & Pope R. M. (2001). The fas-FasL death receptor and PI3K pathways independently regulate monocyte homeostasis. European Journal of Immunology, 31, 24212430.
Price M. E., Cotton A. M., Lam L. L., Farre P., Emberly E., Brown C. J., . . . Kobor M. S. (2013). Additional annotation enhances potential for biologically-relevant analysis of the illumina infinium HumanMethylation450 BeadChip array. Epigenetics & Chromatin, 6, 4.
Riggs B. L., Khosla S., & Melton L. J. 3rd. (2002). Sex steroids and the construction and conservation of the adult skeleton. Endocrine Reviews, 23, 279302.
Ronkainen P. H., Kovanen V., Alen M., Pöllänen E., Palonen E. M., Ankarberg-Lindgren C., . . . Sipilä S. (2009). Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: A study with monozygotic twin pairs. Journal of Applied Physiology, 107, 2533.
Ronkainen P. H., Pöllänen E., Alen M., Pitkanen R., Puolakka J., Kujala U. M., . . . Kovanen V. (2010). Global gene expression profiles in skeletal muscle of monozygotic female twins discordant for hormone replacement therapy. Aging Cell, 9, 10981110.
Sassarini J., & Lumsden M. A. (2015). Oestrogen replacement in postmenopausal women. Age and Ageing, 44, 551558.
Schmitz G., & Langmann T. (2001). Structure, function and regulation of the ABC1 gene product. Current Opinion in Lipidology, 12, 129140.
Shao B., Liao L., Yu Y., Shuai Y., Su X., Jing H., . . . Jin Y. (2015). Estrogen preserves fas ligand levels by inhibiting microRNA-181 a in bone marrow-derived mesenchymal stem cells to maintain bone remodeling balance. FASEB Journal, 29, 39353944.
Shea K. L., Gavin K. M., Melanson E. L., Gibbons E., Stavros A., Wolfe P., . . . Kohrt W. M. (2015). Body composition and bone mineral density after ovarian hormone suppression with or without estradiol treatment. Menopause, 22, 10451052.
Sipilä S., Taaffe D. R., Cheng S., Puolakka J., Toivanen J., & Suominen H. (2001). Effects of hormone replacement therapy and high-impact physical exercise on skeletal muscle in post-menopausal women: A randomized placebo-controlled study. Clinical Science, 101, 147157.
Stefansson O. A., Moran S., Gomez A., Sayols S., Arribas-Jorba C., Sandoval J., . . . Esteller M. (2015). A DNA methylation-based definition of biologically distinct breast cancer subtypes. Molecular Oncology, 9, 555568.
Szulc P., Seeman E., Duboeuf F., Sornay-Rendu E., & Delmas P. D. (2006). Bone fragility: Failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. Journal of Bone and Mineral Research, 21, 18561863.
Taaffe D. R., Sipilä S., Cheng S., Puolakka J., Toivanen J., & Suominen H. (2005). The effect of hormone replacement therapy and/or exercise on skeletal muscle attenuation in postmenopausal women: A yearlong intervention. Clinical Physiology and Functional Imaging, 25, 297304.
Tiainen K., Sipilä S., Alen M., Heikkinen E., Kaprio J., Koskenvuo M., . . . Rantanen T. (2004). Heritability of maximal isometric muscle strength in older female twins. Journal of Applied Physiology, 96, 173180.
Tserel L., Kolde R., Limbach M., Tretyakov K., Kasela S., Kisand K., . . . Peterson P. (2015). Age-related profiling of DNA methylation in CD8+ T cells reveals changes in immune response and transcriptional regulator genes. Scientific Reports, 5, 13107.
Viola A., & Luster A. D. (2008). Chemokines and their receptors: Drug targets in immunity and inflammation. Annual Review of Pharmacology and Toxicology, 48, 171197.
Wagner J. R., Busche S., Ge B., Kwan T., Pastinen T., & Blanchette M. (2014). The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biology, 15, R37.
Wang L., Liu S., Zhao Y., Liu D., Liu Y., Chen C., . . . Jin Y. (2015). Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death and Differentiation, 22, 16541664.
Yang I. V., Pedersen B. S., Liu A., O’Connor G. T., Teach S. J., Kattan M., . . . Schwartz D. A. (2015). DNA methylation and childhood asthma in the inner city. The Journal of Allergy and Clinical Immunology, 136, 6980.
Yi K. D., & Simpkins J. W. (2008). Protein phosphatase 1, protein phosphatase 2A, and calcineurin play a role in estrogen-mediated neuroprotection. Endocrinology, 149, 52355243.
Yuan T., Jiao Y., de Jong S., Ophoff R. A., Beck S., & Teschendorff A. E. (2015). An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging. PLoS Genetics, 11, e1004996.
Zhang J., Chen X., Zhang S., Zhou G., Xia X., & Lu L. (2009). Effects of transdermal estrogen therapy on expressions of estrogen receptors and T-lymphocyte apoptosis in surgically menopausal women. Cellular & Molecular Immunology, 6, 277283.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
EXCEL
Supplementary Materials

Bahl supplementary material
Table S2

 Excel (15 KB)
15 KB
EXCEL
Supplementary Materials

Bahl supplementary material
Table S1

 Excel (455 KB)
455 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 25
Total number of PDF views: 144 *
Loading metrics...

Abstract views

Total abstract views: 492 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.