Skip to main content
×
Home
    • Aa
    • Aa

Phenotypic Factor Analysis of Family Data: Correction of the Bias Due to Dependency

  • Irene Rebollo (a1), Marleen H. M. de Moor (a2), Conor V. Dolan (a3) and Dorret I. Boomsma (a4)
Abstract
Abstract

Twin registries form an exceptionally rich source of information that is largely unexploited for phenotypic analyses. One obstacle to straightforward phenotypic statistical analysis is the inherent dependency, which is due to the clustering of cases within families. The present simulation study gauges the degree of the bias produced by the dependency of family data on the estimates of standard errors and chi-squared, when they are treated as independent observations in a phenotypic model, and assesses the efficiency of an estimator, which corrects for dependency. When family-clustered data are used for phenotypic analysis, in treating individuals as independent, and using standard maximum likelihood estimation, there is a tendency for the chi-square statistic to be overestimated, and the standard errors of the parameters to be underestimated. The bias increases with family resemblance, due to heritability or shared environment. The source of family resemblance — either heritability (h2) and/or shared environment (c2) — interacts with the composition of the sample. In the absence of c2, samples with twins, parents and spouses show the lowest bias, whereas in the presence of c2 samples with only twins show the lowest bias. In all conditions the bias remained below 15%. The use of the ‘complex option’ available in Mplus (clustering corrected robust maximum likelihood estimation) reduces the bias to the levels observed when only independent cases are considered. Thus with the use of robust estimates the bias due to family dependency becomes practically negligible in all conditions of dependency. In conclusion, the present study shows that the bias due to dependency in family data does not form a serious obstacle to phenotypic data analysis.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Phenotypic Factor Analysis of Family Data: Correction of the Bias Due to Dependency
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Phenotypic Factor Analysis of Family Data: Correction of the Bias Due to Dependency
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Phenotypic Factor Analysis of Family Data: Correction of the Bias Due to Dependency
      Available formats
      ×
Copyright
Corresponding author
*Address for correspondence: Irene Rebollo, Department of Biological Psychology, Vrije Universiteit, Van der Boechorststraat 1, 1081 BT Amsterdam, the Netherlands.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Twin Research and Human Genetics
  • ISSN: 1832-4274
  • EISSN: 1839-2628
  • URL: /core/journals/twin-research-and-human-genetics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 33 *
Loading metrics...

Abstract views

Total abstract views: 52 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th May 2017. This data will be updated every 24 hours.