Hostname: page-component-5b777bbd6c-2c8nx Total loading time: 0 Render date: 2025-06-25T11:59:26.205Z Has data issue: false hasContentIssue false

Umbilical Venous Flow Volume and Fetal Combined Cardiac Output in Twin Pregnancies

Published online by Cambridge University Press:  13 May 2025

Sommart Bumrungphuet
Affiliation:
Maternal-Fetal Medicine Division, Obstetrics & Gynaecology Department, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
Katsusuke Ozawa*
Affiliation:
Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
Wirada Hansahiranwadee
Affiliation:
Maternal-Fetal Medicine Division, Obstetrics & Gynaecology Department, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
Jin Muromoto
Affiliation:
Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
Seiji Wada
Affiliation:
Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
Haruhiko Sago
Affiliation:
Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
*
Corresponding author: Katsusuke Ozawa; Email: ozawa-kt@ncchd.go.jp
Get access

Abstract

This study aimed to establish normal reference ranges of combined cardiac output (CCO) and umbilical venous flow volume (UVFV) in twin fetuses at 20 to 28 weeks of gestation and to evaluate the differences between monochorionic and dichorionic twins. CCO and UVFV were prospectively measured by ultrasound at two centers. The following exclusion criteria were applied: age <18 years or >45 years, first hospital visit at >16 weeks of gestation, monochorionic monoamniotic twin pregnancy, fetal structural or chromosomal abnormality, fetal growth restriction, twin-twin transfusion syndrome, twin anemia polycythemia sequence, and severe hypertension or renal disease were excluded. The period was divided into three groups: 20–22 weeks of gestation, 23–25 weeks of gestation, and 26–28 weeks of gestation. The CCO and UVFV were measured at least once during each period. CCO and UVFV were collected from 274 and 269 fetuses and were measured 412 and 424 times, respectively. UVFV and CCO levels increased as gestation progressed. The weight-corrected UVFV (UVFV/kg) and CCO (CCO/kg) remained stable. UVFV and CCO did not differ between monochorionic and dichorionic twin fetuses. The mean ± SD of UVFV/kg and CCO/kg were determined as 127.8 ± 31.8 and 439.4 ± 80.1 mL/kg/min, respectively. The UVFV-to-CCO ratio also remained stable from 20 to 28 weeks of gestation, ranging from 27.7% to 31.8%. The values and ranges of UVFV/kg and mean CCO/kg in twins were similar to those in singletons.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Society for Twin Studies

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Acharya, G., Wilsgaard, T., Rosvold Berntsen, G. K., Maltau, J. M., & Kiserud, T. (2005). Reference ranges for umbilical vein blood flow in the second half of pregnancy based on longitudinal data. Prenatal Diagnosis, 25, 99111. https://doi.org/10.1002/pd.1091 CrossRefGoogle ScholarPubMed
Almog, B., Shehata, F., Aljabri, S., Levin, I., Shalom-Paz, E., & Shrim, A. (2011). Placenta weight percentile curves for singleton and twins deliveries. Placenta, 32, 5862. https://doi.org/10.1016/j.placenta.2010.10.008 CrossRefGoogle ScholarPubMed
Barbera, A., Galan, H. L., Ferrazzi, E., Rigano, S., Józwik, M., Battaglia, F. C., & Pardi, G. (1999). Relationship of umbilical vein blood flow to growth parameters in the human fetus. American Journal of Obstetrics and Gynecology, 181, 174179. https://doi.org/10.1016/s0002-9378(99)70456-4 CrossRefGoogle ScholarPubMed
Baschat, A. A., Gungor, S., Glosemeyer, P., Huber, A., & Hecher, K. (2010). Changes in umbilical venous volume flow after fetoscopic laser occlusion of placental vascular anastomoses in twin-to-twin transfusion syndrome. American Journal of Obstetrics and Gynecology, 203, 479.e471476. https://doi.org/10.1016/j.ajog.2009.11.013 CrossRefGoogle ScholarPubMed
Bellotti, M., Pennati, G., De Gasperi, C., Battaglia, F. C., & Ferrazzi, E. (2000). Role of ductus venosus in distribution of umbilical blood flow in human fetuses during second half of pregnancy. American Journal of Physiology-Heart and Circulatory Physiology, 279(3), H12561263. https://doi.org/10.1152/ajpheart.2000.279.3.H1256 CrossRefGoogle Scholar
Boito, S., Struijk, P. C., Ursem, N. T., Stijnen, T., & Wladimiroff, J. W. (2002). Umbilical venous volume flow in the normally developing and growth-restricted human fetus. Ultrasound in Obstetrics & Gynecology, 19, 344349. https://doi.org/10.1046/j.1469-0705.2002.00671.x CrossRefGoogle ScholarPubMed
Ebbing, C., Rasmussen, S., & Kiserud, T. (2011). Fetal hemodynamic development in macrosomic growth. Ultrasound in Obstetrics & Gynecology, 38, 303308. https://doi.org/10.1002/uog.9046 CrossRefGoogle ScholarPubMed
Flo, K., Wilsgaard, T., & Acharya, G. (2009). Agreement between umbilical vein volume blood flow measurements obtained at the intra-abdominal portion and free loop of the umbilical cord. Ultrasound in Obstetrics & Gynecology, 34, 171176. https://doi.org/10.1002/uog.6441 CrossRefGoogle ScholarPubMed
Flo, K., Wilsgaard, T., & Acharya, G. (2010). Longitudinal reference ranges for umbilical vein blood flow at a free loop of the umbilical cord. Ultrasound in Obstetrics & Gynecology, 36, 567572. https://doi.org/10.1002/uog.7730 CrossRefGoogle Scholar
Gerson, A. G., Wallace, D. M., Stiller, R. J., Paul, D., Weiner, S., & Bolognese, R. J. (1987). Doppler evaluation of umbilical venous and arterial blood flow in the second and third trimesters of normal pregnancy. Obstetrics & Gynecology, 70, 622626.Google ScholarPubMed
Ghi, T., Prefumo, F., Fichera, A., Lanna, M., Periti, E., Persico, N., Viora, E., Rizzo, G.; Società Italiana di Ecografia Ostetrica e Ginecologica Working Group on Fetal Biometric Charts. (2017). Development of customized fetal growth charts in twins. American Journal of Obstetrics and Gynecology, 216, 514.e511514.e517. https://doi.org/10.1016/j.ajog.2016.12.176 CrossRefGoogle ScholarPubMed
Gratacós, E., Van Schoubroeck, D., Carreras, E., Devlieger, R., Roma, E., Cabero, L., & Deprest, J. (2002). Impact of laser coagulation in severe twin-twin transfusion syndrome on fetal Doppler indices and venous blood flow volume. Ultrasound in Obstetrics & Gynecology, 20, 125130. https://doi.org/10.1046/j.1469-0705.2002.00749.x CrossRefGoogle ScholarPubMed
Gungor, S., Glosemeyer, P., Huber, A., Hecher, K., & Baschat, A. A. (2008). Umbilical venous volume flow in twin-twin transfusion syndrome. Ultrasound in Obstetrics & Gynecology, 32, 800806. https://doi.org/10.1002/uog.6227 CrossRefGoogle ScholarPubMed
Hamidi, O. P., Driver, C., Steller, J. G., Peek, E. E., Monasta, L., Stampalija, T., Gumina, D. L., DeVore, G. R., Hobbins, J. C., & Galan, H. L. (2023). Umbilical venous volume flow in late-onset fetal growth restriction. Journal of Ultrasound in Medicine, 42, 173183. https://doi.org/10.1002/jum.15993 CrossRefGoogle ScholarPubMed
Hiersch, L., Okby, R., Freeman, H., Rosen, H., Nevo, O., Barrett, J., & Melamed, N. (2020). Differences in fetal growth patterns between twins and singletons. Journal of Maternal-Fetal & Neonatal Medicine, 33, 25462555. https://doi.org/10.1080/14767058.2018.1555705 CrossRefGoogle ScholarPubMed
Ishii, K., Chmait, R. H., Martínez, J. M., Nakata, M., & Quintero, R. A. (2004). Ultrasound assessment of venous blood flow before and after laser therapy: approach to understanding the pathophysiology of twin-twin transfusion syndrome. Ultrasound in Obstetrics & Gynecology, 24, 164168. https://doi.org/10.1002/uog.1104 CrossRefGoogle ScholarPubMed
Khalil, A., Beune, I., Hecher, K., Wynia, K., Ganzevoort, W., Reed, K., Lewi, L., Oepkes, D., Gratacos, E., Thilaganathan, B., & Gordijn, S. J. (2019). Consensus definition and essential reporting parameters of selective fetal growth restriction in twin pregnancy: A Delphi procedure. Ultrasound in Obstetrics & Gynecology, 53, 4754. https://doi.org/10.1002/uog.19013 CrossRefGoogle ScholarPubMed
Khalil, A., Rodgers, M., Baschat, A., Bhide, A., Gratacos, E., Hecher, K., Lewi, L., Salomon, L. J., Thilaganathan, B., & Ville, Y. (2016). ISUOG Practice Guidelines: Role of ultrasound in twin pregnancy. Ultrasound in Obstetrics & Gynecology, 47, 247263. https://doi.org/10.1002/uog.15821 CrossRefGoogle ScholarPubMed
Kiserud, T., Ebbing, C., Kessler, J., & Rasmussen, S. (2006). Fetal cardiac output, distribution to the placenta and impact of placental compromise. Ultrasound in Obstetrics & Gynecology, 28, 126136. https://doi.org/10.1002/uog.2832 CrossRefGoogle Scholar
Kosińska, M., Sierzputowska-Pieczara, M., Gadzinowski, J., Cygan, D., & Szpecht, D. (2018). Percentile charts of twin birthweight. Pediatrics International, 60, 948953. https://doi.org/10.1111/ped.13669 CrossRefGoogle ScholarPubMed
Luewan, S., Srisupundit, K., Tongprasert, F., Traisrisilp, K., Jatavan, P., & Tongsong, T. (2020). Z score reference ranges of fetal cardiac output from 12 to 40 weeks of pregnancy. Journal of Ultrasound in Medicine, 39, 515527. https://doi.org/10.1002/jum.15128 CrossRefGoogle ScholarPubMed
Maskatia, S. A., Ruano, R., Shamshirsaz, A. A., Javadian, P., Kailin, J. A., Belfort, M. A., Altman, C. A., & Ayres, N. A. (2016). Estimated combined cardiac output and laser therapy for twin-twin transfusion syndrome. Echocardiography, 33, 15631570. https://doi.org/10.1111/echo.13304 CrossRefGoogle ScholarPubMed
Mielke, G., & Benda, N. (2001). Cardiac output and central distribution of blood flow in the human fetus. Circulation, 103, 16621668. https://doi.org/10.1161/01.cir.103.12.1662 CrossRefGoogle ScholarPubMed
Ozawa, K., Davey, M. G., Tian, Z., Hornick, M. A., Mejaddam, A. Y., McGovern, P. E., Flake, A. W., & Rychik, J. (2021). Evaluation of umbilical venous flow volume measured using ultrasound compared to circuit flow volume in the EXTra-uterine Environment for Neonatal Development (EXTEND) system in fetal sheep. Prenatal Diagnosis, 41, 16681674. https://doi.org/10.1002/pd.6041 CrossRefGoogle ScholarPubMed
Ozawa, K., Kanazawa, S., Mikami, M., Muromoto, J., Sugibayashi, R., Wada, S., & Sago, H. (2023). Ultrasound measurement of umbilical venous flow volume at the intra-abdominal portion in normal fetuses. Journal of Medical Ultrasonics, 50, 427432. https://doi.org/10.1007/s10396-023-01315-w CrossRefGoogle ScholarPubMed
Rasanen, J., Wood, D. C., Weiner, S., Ludomirski, A., & Huhta, J. C. (1996). Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation, 94, 10681073. https://doi.org/10.1161/01.cir.94.5.1068 CrossRefGoogle ScholarPubMed
Rigano, S., Bozzo, M., Ferrazzi, E., Bellotti, M., Battaglia, F. C., & Galan, H. L. (2001). Early and persistent reduction in umbilical vein blood flow in the growth-restricted fetus: A longitudinal study. American Journal of Obstetrics and Gynecology, 185, 834838. https://doi.org/10.1067/mob.2001.117356 CrossRefGoogle ScholarPubMed
Rizzo, G., Mappa, I., Bitsadze, V., Khizroeva, J., Makatsarya, A., & D’Antonio, F. (2021). The added value of umbilical vein flow in predicting fetal macrosomia at 36 weeks of gestation: A prospective cohort study. Acta Obstetricia et Gynecologica Scandinavica, 100, 900907. https://doi.org/10.1111/aogs.14047 CrossRefGoogle ScholarPubMed
Rizzo, G., Mappa, I., Bitsadze, V., Słodki, M., Khizroeva, J., Makatsariya, A., & D’Antonio, F. (2020). Role of first-trimester umbilical vein blood flow in predicting large-for-gestational age at birth. Ultrasound in Obstetrics & Gynecology, 56, 6772. https://doi.org/10.1002/uog.20408 CrossRefGoogle ScholarPubMed
Sekiguchi, M., Mikami, M., Nakagawa, C., Ozaki, M., Tanigaki, S., Kobayashi, T., Miyasaka, N., & Sago, H. (2019). An ultrasonographic estimated fetal weight reference for Japanese twin pregnancies. Journal of Medical Ultrasonics, 46, 209215. https://doi.org/10.1007/s10396-018-0921-y CrossRefGoogle ScholarPubMed
Shivkumar, S., Himes, K. P., Hutcheon, J. A., & Platt, R. W. (2015). An ultrasound-based fetal weight reference for twins. American Journal of Obstetrics and Gynecology, 213, 224.e221229. https://doi.org/10.1016/j.ajog.2015.04.015 CrossRefGoogle ScholarPubMed
Stirrup, O. T., Khalil, A., D’Antonio, F., & Thilaganathan, B. (2015). Fetal growth reference ranges in twin pregnancy: Analysis of the Southwest Thames Obstetric Research Collaborative (STORK) multiple pregnancy cohort. Ultrasound in Obstetrics & Gynecology, 45, 301307. https://doi.org/10.1002/uog.14640 CrossRefGoogle Scholar
Szwast, A., Tian, Z., McCann, M., Donaghue, D., Bebbington, M., Johnson, M., Wilson, R. D., & Rychik, J. (2007). Impact of altered loading conditions on ventricular performance in fetuses with congenital cystic adenomatoid malformation and twin-twin transfusion syndrome. Ultrasound in Obstetrics & Gynecology, 30, 4046. https://doi.org/10.1002/uog.4032 CrossRefGoogle ScholarPubMed
Tchirikov, M., Rybakowski, C., Hüneke, B., Schoder, V., & Schröder, H. J. (2002). Umbilical vein blood volume flow rate and umbilical artery pulsatility as ‘venous-arterial index’ in the prediction of neonatal compromise. Ultrasound in Obstetrics & Gynecology, 20, 580585. doi: 10.1046/j.1469-0705.2002.00832.x CrossRefGoogle ScholarPubMed
Yamamoto, M., Nasr, B., Ortqvist, L., Bernard, J. P., Takahashi, Y., & Ville, Y. (2007). Intertwin discordance in umbilical venous volume flow: A reflection of blood volume imbalance in twin-to-twin transfusion syndrome. Ultrasound in Obstetrics & Gynecology, 29, 317320. https://doi.org/10.1002/uog.3959 CrossRefGoogle Scholar
Supplementary material: File

Bumrungphuet et al. supplementary material

Bumrungphuet et al. supplementary material
Download Bumrungphuet et al. supplementary material(File)
File 683.1 KB