Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-pgkvd Total loading time: 0.367 Render date: 2022-08-14T09:37:54.553Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Cell density ratios in a foveal patch in macaque retina

Published online by Cambridge University Press:  26 June 2003

KAREEM M. AHMAD
Affiliation:
Department of Psychology, Franz Hall, UCLA, Los Angeles
KARL KLUG
Affiliation:
Brain Research Institute, UCLA, Los Angeles
STEVE HERR
Affiliation:
Department of Psychology, Franz Hall, UCLA, Los Angeles
PETER STERLING
Affiliation:
Department of Neuroscience, University of Pennsylvania, Philadelphia
STAN SCHEIN
Affiliation:
Department of Psychology, Franz Hall, UCLA, Los Angeles Brain Research Institute, UCLA, Los Angeles

Abstract

We examine the assumptions that the fovea contains equal numbers of inner (invaginating or ON) and outer (flat or OFF) midget bipolar cells and equal numbers of inner and outer diffuse bipolar cells. Based on reconstruction from electron photomicrographs of serial thin sections through the fovea of a macaque monkey, we reject both assumptions. First, every foveal L and M cone is presynaptic to one inner and one outer midget bipolar cell; however, S cones are presynaptic to one outer but no inner midget bipolar cell. Second, we measure the density of all foveal cells in the same patch of fovea, affording accurate cell density ratios. For each foveal cone pedicle, at a density of 26,500 mm−2, there is close to one (0.88) outer diffuse bipolar cell but only 0.40 inner diffuse bipolar cells. This asymmetry may be related to differences in resolution and sensitivity for light increments and decrements. We also find one (1.01) Müller cell, one (1.01) amacrine cell in the inner nuclear layer, and close to one (0.83) horizontal cell for each cone pedicle. In addition, for each S cone, there are two inner S-cone bipolar cells and two small bistratified ganglion cells. In total, there are 3.4 cone bipolar cells per cone but only 2.6 ganglion cells per cone. The latter ratio is enough to accommodate one midget ganglion cell for each midget bipolar cell.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
52
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cell density ratios in a foveal patch in macaque retina
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Cell density ratios in a foveal patch in macaque retina
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Cell density ratios in a foveal patch in macaque retina
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *