Hostname: page-component-7d684dbfc8-jr2wd Total loading time: 0 Render date: 2023-09-21T17:17:31.932Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Dynamic shifts of the contrast-response function

Published online by Cambridge University Press:  02 June 2009

Jonathan D. Victor
Department of Neurology and Neuroscience, Cornell University Medical College, New York
Mary M. Conte
Department of Neurology and Neuroscience, Cornell University Medical College, New York
Keith P. Purpura
Department of Neurology and Neuroscience, Cornell University Medical College, New York


We recorded visual evoked potentials in response to square-wave contrast-reversal checkerboards undergoing a transition in the mean contrast level. Checkerboards were modulated at 4.22 Hz (8.45-Hz reversal rate). After each set of 16 cycles of reversals, stimulus contrast abruptly switched between a “high” contrast level (0.06 to 1.0) to a “low” contrast level (0.03 to 0.5). Higher contrasts attenuated responses to lower contrasts by up to a factor of 2 during the period immediately following the contrast change. Contrast-response functions derived from the initial second following a conditioning contrast shifted by a factor of 2–4 along the contrast axis. For low-contrast stimuli, response phase was an advancing function of the contrast level in the immediately preceding second. For high-contrast stimuli, response phase was independent of the prior contrast history. Steady stimulation for periods as long as 1 min produced only minor effects on response amplitude, and no detectable effects on response phase. These observations delineate the dynamics of a contrast gain control in human vision.

Research Articles
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Albrecht, D.G., & Hamilton, D.B. (1982). Striate cortex of monkey and cat: Contrast-response function. Journal of Neurophysiology 48, 217237.Google ScholarPubMed
Albrecht, D.G., Farrar, S.B. & Hamilton, D.B. (1984). Spatial contrast adaptation characteristics of neurons recorded in the cat's visual cortex. Journal of Physiology 347, 713739.CrossRefGoogle Scholar
Bach, M., Greenlee, M.W. & BÜhler, B. (1988). Contrast adaptation can increase visually evoked potential amplitude. Clinical Vision Sciences 3, 185194.Google Scholar
Benardete, E.A., Kaplan, E. & Knight, B.W. (1992). Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Visual Neuroscience 8, 483486.CrossRefGoogle ScholarPubMed
Blakemore, C. & Campbell, F. (1969). On the existence in the human visual system of neurons selectively sensitive to the orientation and size of retinal images. Journal of Physiology 203, 237260.CrossRefGoogle ScholarPubMed
Bobak, P., Bodis-Wollner, I. & Marx, M.S. (1988). Cortical contrast gain control in human spatial vision. Journal of Physiology 405, 421437.CrossRefGoogle ScholarPubMed
Bodis-Wollner, I., Hendley, C.D. & Kulikowski, J.J. (1972). Psychophysical and electrophysiological responses to the modulation of contrast of a grating pattern. Perception 1, 341349.CrossRefGoogle ScholarPubMed
Bodis-Wollner, I., Hendley, C.D. & Tajfel, M. (1973). Contrast modulation threshold as a function of spatial frequency. Journal of the Optical Society of America 63, 1297.Google Scholar
Bonds, A.B. (1991). Temporal dynamics of contrast gain in single cells of the cat striate cortex. Visual Neuroscience 6, 239255.CrossRefGoogle ScholarPubMed
Chubb, C., Sperling, G. & Solomon, J.A. (1989). Texture interactions determine perceived contrast. Proceedings of the National Academy of Sciences of the U.S.A. 86, 96319635.CrossRefGoogle ScholarPubMed
Conte, M.M. (1995). Comparisons between electrophysiologically and psychophysically determined contrast-sensitivity functions in humans. Thesis, The City University of New York, New York City.Google Scholar
Conte, M.M., Waran, M. & Victor, J.D. (1995). Dynamic shifts of the human contrast-response function. Investigative Ophthalmology and Visual Science (Suppl.), 36, 903.Google Scholar
Deweerd, P., Gattass, R., Desimone, R. & Ungerleider, L.G. (1995). Responses of cells in monkey visual cortex during perceptual filling-in of an artifīcial scotoma. Nature 377, 731734.Google Scholar
Geisler, W.S. & Albrecht, D.G. (1992). Cortical neurons: Isolation of contrast gain control. Vision Research 22, 14091410.CrossRefGoogle Scholar
Giaschi, D., Douglas, R., Marlin, S. & Cynader, M. (1993). The time course of direction-selective adaptation in simple and complex cells in cat striate cortex. Journal of Neurophysiology 70, 20242034.Google ScholarPubMed
Greenlee, M.W., Georgeson, M.A., Magnussen, S. & Harris, J.P. (1991). The time course of adaptation to spatial contrast. Vision Research 31, 223236.CrossRefGoogle ScholarPubMed
Greenlee, M.W. & Heitger, F. (1988). The functional role of contrast adaptation. Vision Research 28, 791797.CrossRefGoogle ScholarPubMed
Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience 9, 181197.CrossRefGoogle ScholarPubMed
Määttänen, L.M. & Koenderink, J.J. (1991). Contrast adaptation and contrast gain control. Experimental Brain Research 87, 205212.CrossRefGoogle ScholarPubMed
Maddess, T., Mccourt, M.E., Blakeslee, B. & Cunningham, R.B. (1988). Factors governing the adaptation of cells in area-17 of the cat visual cortex. Biological Cybernetics 59, 229236.CrossRefGoogle ScholarPubMed
Milkman, N., Schick, G., Rossetto, M., Ratliff, F., Shapley, R. & Victor, J.D. (1980). A two-dimensional computer-controlled visual stimulator. Behavioral Research Methods and Instrumentation 12, 283292.CrossRefGoogle Scholar
Movshon, J.A. & Lennie, P. (1979). Pattern-selective adaptation in visual cortical neurones. Nature 278, 850852.CrossRefGoogle Scholar
Norcia, A.M., Tyler, C.W., Hamer, R.D. & Wesemann, W. (1989). Measurement of spatial contrast sensitivity with the swept contrast VEP. Vision Research 29, 627637.CrossRefGoogle ScholarPubMed
Ohzawa, I., Sclar, G. & Freeman, R.D. (1985). Contrast gain control in the cat's visual system. Journal of Neurophysiology 54, 651667.Google ScholarPubMed
Pang, X.D. & Bonds, A.B. (1991). Visual evoked potential responses of the anaesthetized cat to contrast modulation of grating patterns. Vision Research 31, 15091516.CrossRefGoogle Scholar
Peachey, N., Demarco, P.J. Jr, Ubilluz, R. & Yee, W. (1994). Short-term changes in the response characteristics of the human visual evoked potential. Vision Research 34, 28232831.CrossRefGoogle ScholarPubMed
Regan, D. (1973). Rapid objective refraction using evoked brain potentials. Investigative Ophthalmology and Visual Science 12, 669679.Google ScholarPubMed
Regan, D. (1989). Human Brain Electrophysiology. New York: Elsevier.Google Scholar
Reid, R.C., Victor, J.D. & Shapley, R.M. (1992). Broad-band temporal stimuli decrease the integration time of neurons in cat striate cortex. Visual Neuroscience 9, 3945.CrossRefGoogle Scholar
Saul, A.B. & Cynader, M.S. (1989). Adaptation in single units in visual cortex: The tuning of aftereffects in the temporal domain. Visual Neuroscience 2, 609620.CrossRefGoogle ScholarPubMed
Sclar, G., Lennie, P. & Depriest, D.D. (1989). Contrast adaptation in striate cortex of macaque. Vision Research 29, 747755.CrossRefGoogle ScholarPubMed
Sclar, G., Maunsell, J.H.R. & Lennie, P. (1990). Coding of image contrast in central visual pathways of the macaque monkey. Vision Research 30, 110.CrossRefGoogle ScholarPubMed
Shapley, R. & Victor, J.D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. Journal of Physiology 285, 275298.CrossRefGoogle ScholarPubMed
Shapley, R. & Victor, J.D. (1979). Nonlinear spatial summation and the contrast gain control of cat retinal ganglion cells. Journal of Physiology 290, 141161.CrossRefGoogle ScholarPubMed
Shapley, R. & Victor, J.D. (1981). How the contrast gain control modifies the frequency response of cat retinal ganglion cells. Journal of Physiology 318, 161179.CrossRefGoogle ScholarPubMed
Solomon, J.A., Sperling, G. & Chubb, C. (1993). The lateral inhibition of perceived contrast is indifferent to on-center/off-center segregation, but specific to orientation. Vision Research 33, 26712683.CrossRefGoogle Scholar
Tyler, C.W., Apkarian, P.A., Levi, D.M. & Nakayama, K. (1979). Rapid assessment of visual function: An electronic sweep technique for the pattern visual evoked potential. Investigative Ophthalmology and Visual Science 18, 703713.Google ScholarPubMed
Victor, J.D. (1988). Models for preattentive texture discrimination: Fourier analysis and local feature processing in a unified framework. Spatial Vision 3, 263280.CrossRefGoogle Scholar
Victor, J.D. & Conte, M.M. (1991). Spatial organization of nonlinear interactions in form perception. Vision Research 31, 14571488.CrossRefGoogle ScholarPubMed
Victor, J.D. & Conte, M.M. (1994). Dynamics of the human contrast gain control, as assessed by visual evoked potentials. Investigative Ophthalmology and Visual Science (Suppl.) 35, 1439.Google Scholar
Victor, J.D. & Mast, J. (1991). A new statistic for steady-state evoked potentials. Electroencephalography and Clinical Neurophysiology 78, 378388.CrossRefGoogle ScholarPubMed
Viviani, P. (1990). Eye movements in visual search: Cognitive, perceptual, and motor control aspects. In Eye Movements and Their Role in Visual and Cognitive Processes, ed. Kowler, E., pp. 353393. Amsterdam: Elsevier.Google Scholar
Walsh, G. & Charman, W.N. (1990). The subjective sensitivity to small changes in the contrast of a suprathreshold grating. Vision Research 30, 163173.CrossRefGoogle ScholarPubMed
Wilson, H. & Humanski, R. (1993). Spatial frequency adaptation and contrast gain control. Vision Research 33, 11331149.CrossRefGoogle ScholarPubMed
Xin, D., Seiple, W., Holopigian, K. & Kupersmith, M.J. (1994). Visual evoked potentials following abrupt contrast changes. Vision Research 34, 28132821.CrossRefGoogle ScholarPubMed
Yeh, T., Lee, B.B. & Kremers, J. (1996). The time course of adaptation in macaque retinal ganglion cells. Vision Research 36, 913931.CrossRefGoogle ScholarPubMed
Zemon, V., Gutowski, W. & Horton, T. (1983). Orientational anisotropy in the human visual system: An evoked potential and psychophysical study. International Journal of Neuroscience 19, 259286.CrossRefGoogle ScholarPubMed