Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-rfl4x Total loading time: 0.663 Render date: 2021-09-26T11:05:04.395Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Processing of S-cone signals in the inner plexiform layer of the mammalian retina

Published online by Cambridge University Press:  09 September 2013

KIYOHARU J. MIYAGISHIMA
Affiliation:
National Eye Institute, National Institutes of Health, Bethesda, Maryland
ULRIKE GRÜNERT
Affiliation:
Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia Australian Research Council Center of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia
WEI LI*
Affiliation:
National Eye Institute, National Institutes of Health, Bethesda, Maryland

Abstract

Color information is encoded by two parallel pathways in the mammalian retina. One pathway compares signals from long- and middle-wavelength sensitive cones and generates red-green opponency. The other compares signals from short- and middle-/long-wavelength sensitive cones and generates blue-green (yellow) opponency. Whereas both pathways operate in trichromatic primates (including humans), the fundamental, phylogenetically ancient color mechanism shared among most mammals is blue-green opponency. In this review, we summarize the current understanding of how signals from short-wavelength sensitive cones are processed in the primate and nonprimate mammalian retina, with a focus on the inner plexiform layer where bipolar, amacrine, and ganglion cell processes interact to facilitate the generation of blue-green opponency.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahnelt, P.K. & Kolb, H. (2000). The mammalian photoreceptor mosaic-adaptive design. Progress in Retinal and Eye Research 19, 711777.CrossRefGoogle ScholarPubMed
Berson, D.M., Dunn, F.A. & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 10701073.CrossRefGoogle Scholar
Bloomfield, S.A. & Dacheux, R.F. (2001). Rod vision: Pathways and processing in the mammalian retina. Progress in Retinal and Eye Research 20, 351384.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Dowling, J.E. (1969). Organization of the primate retina: light microscopy. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 255, 109176.CrossRefGoogle Scholar
Boycott, B.B. & Wässle, H. (1991). Morphological classification of bipolar cells of the primate retina. The European Journal of Neuroscience 3, 10691088.CrossRefGoogle ScholarPubMed
Breuninger, T., Puller, C., Haverkamp, S. & Euler, T. (2011). Chromatic bipolar cell pathways in the mouse retina. The Journal of Neuroscience 31, 65046517.CrossRefGoogle ScholarPubMed
Brown, T.M., Tsujimura, S., Allen, A.E., Wynne, J., Bedford, R., Vickery, G., Vugler, A. & Lucas, R.J. (2012). Melanopsin-based brightness discrimination in mice and humans. Current Biology: CB 22, 11341141.CrossRefGoogle ScholarPubMed
Bumsted, K. & Hendrickson, A. (1999). Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea. The Journal of Comparative Neurology 403, 502516.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Calkins, D.J. (2000). Representation of cone signals in the primate retina. Journal of the Optical Society of America A, Optics, Image Science, and Vision 17, 597606.CrossRefGoogle ScholarPubMed
Calkins, D.J. (2001). Seeing with S cones. Progress in Retinal and Eye Research 20, 255287.CrossRefGoogle ScholarPubMed
Calkins, D.J., Schein, S.J., Tsukamoto, Y. & Sterling, P. (1994). M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371, 7072.CrossRefGoogle Scholar
Calkins, D.J. & Sterling, P. (2007). Microcircuitry for two types of achromatic ganglion cell in primate fovea. The Journal of Neuroscience 27, 26462653.CrossRefGoogle ScholarPubMed
Calkins, D.J., Tsukamoto, Y. & Sterling, P. (1998). Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. The Journal of Neuroscience 18, 33733385.Google ScholarPubMed
Cao, D., Pokorny, J., Smith, V.C. & Zele, A.J. (2008). Rod contributions to color perception: Linear with rod contrast. Vision Research 48, 25862592.CrossRefGoogle Scholar
Chan, T.L., Martin, P.R., Clunas, N. & Grünert, U. (2001). Bipolar cell diversity in the primate retina: Morphologic and immunocytochemical analysis of a New World monkey, the marmoset Callithrix jacchus. The Journal of Comparative Neurology 437, 219239.CrossRefGoogle ScholarPubMed
Chang, L., Breuninger, T. & Euler, T. (2013). Chromatic coding from cone-type unselective circuits in the mouse retina. Neuron 77, 559571.CrossRefGoogle ScholarPubMed
Chatterjee, S. & Callaway, E.M. (2002). S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron 35, 11351146.CrossRefGoogle ScholarPubMed
Chen, S. & Li, W. (2012). A color-coding amacrine cell may provide a blue-off signal in a mammalian retina. Nature Neuroscience 15, 954956.CrossRefGoogle Scholar
Crook, J.D., Davenport, C.M., Peterson, B.B., Packer, O.S., Detwiler, P.B. & Dacey, D.M. (2009). Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. The Journal of Neuroscience 29, 83728387.CrossRefGoogle ScholarPubMed
Curcio, C.A., Allen, K.A., Sloan, K.R., Lerea, C.L., Hurley, J.B., Klock, I.B. & Milam, A.H. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. The Journal of Comparative Neurology 312, 610624.CrossRefGoogle ScholarPubMed
Dacey, D., Packer, O.S., Diller, L., Brainard, D., Peterson, B. & Lee, B. (2000). Center surround receptive field structure of cone bipolar cells in primate retina. Vision Research 40, 18011811.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1993). Morphology of a small-field bistratified ganglion cell type in the macaque and human retina. Visual Neuroscience 10, 10811098.CrossRefGoogle Scholar
Dacey, D.M. & Lee, B.B. (1994). The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.CrossRefGoogle Scholar
Dacey, D.M., Liao, H.W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.W. & Gamlin, P.D. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749754.CrossRefGoogle ScholarPubMed
Dacey, D.M. & Packer, O.S. (2003). Colour coding in the primate retina: Diverse cell types and cone-specific circuitry. Current Opinion in Neurobiology 13, 421427.CrossRefGoogle ScholarPubMed
Dacey, D.M., Peterson, B.B., Robinson, F.R. & Gamlin, P.D. (2003). Fireworks in the primate retina: In vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37, 1527.CrossRefGoogle ScholarPubMed
Derrington, A.M., Krauskopf, J. & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. The Journal of Physiology 357, 241265.CrossRefGoogle ScholarPubMed
Evers, H.U. & Gouras, P. (1986). Three cone mechanisms in the primate electroretinogram: Two with, one without off-center bipolar responses. Vision Research 26, 245254.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. Jr. (1981). Functional architecture of cone bipolar cells in mammalian retina. Vision Research 21, 15591563.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (2008). Wide-field cone bipolar cells and the blue-ON pathway to color-coded ganglion cells in rabbit retina. Visual Neuroscience 25, 5366.CrossRefGoogle Scholar
Field, G.D. & Chichilnisky, E.J. (2007). Information processing in the primate retina: Circuitry and coding. Annual Review of Neuroscience 30, 130.CrossRefGoogle Scholar
Field, G.D., Gauthier, J.L., Sher, A., Greschner, M., Machado, T.A., Jepson, L.H., Shlens, J., Gunning, D.E., Mathieson, K., Dabrowski, W., Paninski, L., Litke, A.M. & Chichilnisky, E.J. (2010). Functional connectivity in the retina at the resolution of photoreceptors. Nature 467, 673677.CrossRefGoogle ScholarPubMed
Field, G.D., Greschner, M., Gauthier, J.L., Rangel, C., Shlens, J., Sher, A., Marshak, D.W., Litke, A.M. & Chichilnisky, E.J. (2009). High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina. Nature Neuroscience 12, 11591164.CrossRefGoogle ScholarPubMed
Ghosh, K.K. & Grünert, U. (1999). Synaptic input to small bistratified (blue-ON) ganglion cells in the retina of a new world monkey, the marmoset Callithrix jacchus. The Journal of Comparative Neurology 413, 417428.3.0.CO;2-H>CrossRefGoogle Scholar
Ghosh, K.K., Martin, P.R. & Grünert, U. (1997). Morphological analysis of the blue cone pathway in the retina of a new world monkey, the marmoset Callithrix jacchus. The Journal of Comparative Neurology 379, 211225.3.0.CO;2-6>CrossRefGoogle Scholar
Grünert, U., Jusuf, P.R., Lee, S.C. & Nguyen, D.T. (2011). Bipolar input to melanopsin containing ganglion cells in primate retina. Visual Neuroscience 28, 3950.CrossRefGoogle ScholarPubMed
Haverkamp, S., Wässle, H., Duebel, J., Kuner, T., Augustine, G.J., Feng, G. & Euler, T. (2005). The primordial, blue-cone color system of the mouse retina. The Journal of Neuroscience 25, 54385445.CrossRefGoogle ScholarPubMed
Hemmi, J.M., James, A. & Taylor, W.R. (2002). Color opponent retinal ganglion cells in the tammar wallaby retina. Journal of Vision 2, 608617.CrossRefGoogle ScholarPubMed
Hendrickson, A., Djajadi, H.R., Nakamura, L., Possin, D.E. & Sajuthi, D. (2000). Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography. The Journal of Comparative Neurology 424, 718730.3.0.CO;2-Z>CrossRefGoogle Scholar
Herr, S., Klug, K.J., Sterling, P. & Schein, S. (2003). Inner S-cone bipolar cells provide all of the central elements for S cones in macaque retina. The Journal of Comparative Neurology 457, 185201.CrossRefGoogle Scholar
Hopkins, J.M. & Boycott, B.B. (1997). The cone synapses of cone bipolar cells of primate retina. Journal of Neurocytology 26, 313325.CrossRefGoogle Scholar
Jacobs, G.H. (2007). New World monkeys and color. International Journal of Primatology 28, 729759.CrossRefGoogle Scholar
Jacobs, G.H. (2008). Primate color vision: A comparative perspective. Visual Neuroscience 25, 619633.CrossRefGoogle Scholar
Jacobs, G.H. & Nathans, J. (2009). The evolution of primate color vision. Scientific American 300, 5663.CrossRefGoogle ScholarPubMed
Jacoby, R.A., Wiechmann, A.F., Amara, S.G., Leighton, B.H. & Marshak, D.W. (2000). Diffuse bipolar cells provide input to OFF parasol ganglion cells in the macaque retina. The Journal of Comparative Neurology 416, 618.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Joo, H.R., Peterson, B.B., Haun, T.J. & Dacey, D.M. (2011). Characterization of a novel large-field cone bipolar cell type in the primate retina: Evidence for selective cone connections. Visual Neuroscience 28, 2937.CrossRefGoogle ScholarPubMed
Jusuf, P.R., Martin, P.R. & Grünert, U. (2006). Synaptic connectivity in the midget-parvocellular pathway of primate central retina. The Journal of Comparative Neurology 494, 260274.CrossRefGoogle ScholarPubMed
Klug, K., Herr, S., Ngo, I.T., Sterling, P. & Schein, S. (2003). Macaque retina contains an S-cone OFF midget pathway. The Journal of Neuroscience 23, 98819887.Google ScholarPubMed
Kolb, H. & Dekorver, L. (1991). Midget ganglion cells of the parafovea of the human retina: A study by electron microscopy and serial section reconstructions. The Journal of Comparative Neurology 303, 617636.CrossRefGoogle ScholarPubMed
Kolb, H., Goede, P., Roberts, S., McDermott, R. & Gouras, P. (1997). Uniqueness of the S-cone pedicle in the human retina and consequences for color processing. The Journal of Comparative Neurology 386, 443460.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Kolb, H., Linberg, K.A. & Fisher, S.K. (1992). Neurons of the human retina: A Golgi study. The Journal of Comparative Neurology 318, 147187.CrossRefGoogle ScholarPubMed
Kouyama, N. & Marshak, D.W. (1992). Bipolar cells specific for blue cones in the macaque retina. The Journal of Neuroscience 12, 12331252.Google ScholarPubMed
Kryger, Z., Galli-Resta, L., Jacobs, G.H. & Reese, B.E. (1998). The topography of rod and cone photoreceptors in the retina of the ground squirrel. Visual Neuroscience 15, 685691.CrossRefGoogle ScholarPubMed
Lee, S.C. & Grünert, U. (2007). Connections of diffuse bipolar cells in primate retina are biased against S-cones. The Journal of Comparative Neurology 502, 126140.CrossRefGoogle ScholarPubMed
Lee, S.C., Jusuf, P.R. & Grünert, U. (2004). S-cone connections of the diffuse bipolar cell type DB6 in macaque monkey retina. The Journal of Comparative Neurology 474, 353363.CrossRefGoogle ScholarPubMed
Lee, S.C., Telkes, I. & Grünert, U. (2005). S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus. The European Journal of Neuroscience 22, 437447.CrossRefGoogle Scholar
Li, W. & DeVries, S.H. (2004). Separate blue and green cone networks in the mammalian retina. Nature Neuroscience 7, 751756.CrossRefGoogle ScholarPubMed
Li, W. & DeVries, S.H. (2006). Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina. Nature Neuroscience 9, 669675.CrossRefGoogle Scholar
Liu, P.C. & Chiao, C.C. (2007). Morphologic identification of the OFF-type blue cone bipolar cell in the rabbit retina. Investigative Ophthalmology & Visual Science 48, 33883395.CrossRefGoogle ScholarPubMed
Luo, X.G., Ghosh, K.K., Martin, P.R. & Grünert, U. (1999). Analysis of two types of cone bipolar cells in the retina of a New World monkey, the marmoset, Callithrix jacchus. Visual Neuroscience 16, 707719.CrossRefGoogle ScholarPubMed
MacNeil, M.A. & Gaul, P.A. (2008). Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones. The Journal of Comparative Neurology 506, 615.CrossRefGoogle Scholar
Marc, R.E. & Sperling, H.G. (1977). Chromatic organization of primate cones. Science 196, 454456.CrossRefGoogle Scholar
Mariani, A.P. (1984). Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308, 184186.CrossRefGoogle Scholar
Marshak, D.W., Aldrich, L.B., Del Valle, J. & Yamada, T. (1990). Localization of immunoreactive cholecystokinin precursor to amacrine cells and bipolar cells of the macaque monkey retina. The Journal of Neuroscience 10, 30453055.Google ScholarPubMed
Martin, P.R. (1998). Colour processing in the primate retina: Recent progress. The Journal of Physiology 513, 631638.CrossRefGoogle ScholarPubMed
Martin, P.R. & Grünert, U. (1999). Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: Comparison of New World and Old World monkeys. The Journal of Comparative Neurology 406, 114.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Martin, P.R., Grünert, U., Chan, T.L. & Bumsted, K. (2000). Spatial order in short-wavelength-sensitive cone photoreceptors: A comparative study of the primate retina. Journal of the Optical Society of America A, Optics, Image Science, and Vision 17, 557567.CrossRefGoogle ScholarPubMed
Masland, R.H. (2001). Neuronal diversity in the retina. Current Opinion in Neurobiology 11, 431436.CrossRefGoogle ScholarPubMed
McMahon, M.J., Packer, O.S. & Dacey, D.M. (2004). The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway. The Journal of Neuroscience 24, 37363745.CrossRefGoogle ScholarPubMed
Mollon, J.D. (1989). “Tho’ she kneel’d in that place where they grew...” the uses and origins of primate colour vision. The Journal of Experimental Biology 146, 2138.Google ScholarPubMed
Mollon, J.D. & Jordan, G. (1988). Eine evolutionäre Interpretation des menschlichen Farbensehens. Die Farbe 35, 139170.Google Scholar
Neitz, J. & Neitz, M. (2011). The genetics of normal and defective color vision. Vision Research 51, 633651.CrossRefGoogle ScholarPubMed
Packer, O.S., Verweij, J., Li, P.H., Schnapf, J.L. & Dacey, D.M. (2010). Blue-yellow opponency in primate S cone photoreceptors. The Journal of Neuroscience 30, 568572.CrossRefGoogle ScholarPubMed
Percival, K.A., Jusuf, P.R., Martin, P.R. & Grünert, U. (2009). Synaptic inputs onto small bistratified (blue-ON/yellow-OFF) ganglion cells in marmoset retina. The Journal of Comparative Neurology 517, 655669.CrossRefGoogle Scholar
Percival, K.A., Martin, P.R. & Grünert, U. (2011). Synaptic inputs to two types of koniocellular pathway ganglion cells in marmoset retina. The Journal of Comparative Neurology 519, 21352153.CrossRefGoogle Scholar
Polyak, S.L. (1941). The Retina: The Anatomy and the Histology of the Retina in Man, Ape, and Monkey, Including the Consideration of Visual Functions, the History of Physiological Optics, and the Histological Laboratory Technique: a 50. Chicago, IL: Anniversary Publication of the University of Chicago Press.Google Scholar
Puthussery, T., Gayet-Primo, J., Taylor, W.R. & Haverkamp, S. (2011). Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina. The Journal of Comparative Neurology 519, 36403656.CrossRefGoogle Scholar
Reid, R.C. & Shapley, R.M. (1992). Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 356, 716718.CrossRefGoogle ScholarPubMed
Rodieck, R.W. (1988). The primate retina. In Comparative Primate Biology, ed. Steklis, H.D. & Erwin, J., pp. 203278. New York: Alan R. Liss Inc.Google Scholar
Rodieck, R.W. (1991). Which cells code for color? In From Pigments to Perception: Advances in Understanding Visual Processes, ed. Valberg, A. & Lee, B.B., pp. 8393. New York: Plenum Press.CrossRefGoogle Scholar
Schein, S., Sterling, P., Ngo, I.T., Huang, T.M. & Herr, S. (2004). Evidence that each S cone in macaque fovea drives one narrow-field and several wide-field blue-yellow ganglion cells. The Journal of Neuroscience 24, 83668378.CrossRefGoogle Scholar
Shapley, R. (2006). Specificity of cone connections in the retina and color vision. Focus on “specificity of cone inputs to macaque retinal ganglion cells”. Journal of Neurophysiology 95, 587588.CrossRefGoogle Scholar
Sher, A. & DeVries, S.H. (2012). A non-canonical pathway for mammalian blue-green color vision. Nature Neuroscience 15, 952953.CrossRefGoogle Scholar
Shinomori, K. & Werner, J.S. (2012). Aging of human short-wave cone pathways. Proceedings of the National Academy of Sciences of the United States of America 109, 1342213427.CrossRefGoogle ScholarPubMed
Silveira, L.C., Lee, B.B., Yamada, E.S., Kremers, J., Hunt, D.M., Martin, P.R. & Gomes, F.L. (1999). Ganglion cells of a short-wavelength-sensitive cone pathway in New World monkeys: Morphology and physiology. Visual Neuroscience 16, 333343.CrossRefGoogle ScholarPubMed
Silveira, L.C., Lee, B.B., Yamada, E.S., Kremers, J., Martin, P.R., Yamada, E.S. & Hunt, D.M. (1998). Ganglion cell responses in the retinae of trichromatic female capuchin monkeys. Investigative Ophthalomology & Visual Science 39, S564.Google Scholar
Smith, E.L. III, Harwerth, R.S., Crawford, M.L. & Duncan, G.C. (1989). Contribution of the retinal ON channels to scotopic and photopic spectral sensitivity. Visual Neuroscience 3, 225239.CrossRefGoogle ScholarPubMed
Solomon, S.G. & Lennie, P. (2005). Chromatic gain controls in visual cortical neurons. The Journal of Neuroscience 25, 47794792.CrossRefGoogle Scholar
Sun, H., Smithson, H.E., Zaidi, Q. & Lee, B.B. (2006). Specificity of cone inputs to macaque retinal ganglion cells. Journal of Neurophysiology 95, 837849.CrossRefGoogle ScholarPubMed
Szmajda, B.A., Buzas, P., Fitzgibbon, T. & Martin, P.R. (2006). Geniculocortical relay of blue-off signals in the primate visual system. Proceedings of the National Academy of Sciences of the United States of America 103, 1951219517.CrossRefGoogle ScholarPubMed
Szmajda, B.A., Grünert, U. & Martin, P.R. (2008). Retinal ganglion cell inputs to the koniocellular pathway. The Journal of Comparative Neurology 510, 251268.CrossRefGoogle ScholarPubMed
Tailby, C., Solomon, S.G. & Lennie, P. (2008 a). Functional asymmetries in visual pathways carrying S-cone signals in macaque. The Journal of Neuroscience 28, 40784087.CrossRefGoogle Scholar
Tailby, C., Szmajda, B.A., Buzas, P., Lee, B.B. & Martin, P.R. (2008 b). Transmission of blue (S) cone signals through the primate lateral geniculate nucleus. The Journal of Physiology 586, 59475967.CrossRefGoogle ScholarPubMed
Telkes, I., Lee, S.C., Jusuf, P.R. & Grünert, U. (2008). The midget-parvocellular pathway of marmoset retina: A quantitative light microscopic study. The Journal of Comparative Neurology 510, 539549.CrossRefGoogle Scholar
Terasaki, H., Miyake, Y., Nomura, R., Horiguchi, M., Suzuki, S. & Kondo, M. (1999). Blue-on-yellow perimetry in the complete type of congenital stationary night blindness. Investigative Ophthalmology & Visual Science 40, 27612764.Google ScholarPubMed
Vardi, N., Duvoisin, R., Wu, G. & Sterling, P. (2000). Localization of mGluR6 to dendrites of ON bipolar cells in primate retina. The Journal of Comparative Neurology 423, 402412.3.0.CO;2-E>CrossRefGoogle Scholar
Wässle, H., Grünert, U., Martin, P.R. & Boycott, B.B. (1994). Immunocytochemical characterization and spatial-distribution of midget bipolar cells in the macaque monkey retina. Vision Research 34, 561579.CrossRefGoogle ScholarPubMed
Watanabe, M. & Rodieck, R.W. (1989). Parasol and midget ganglion cells of the primate retina. The Journal of Comparative Neurology 289, 434454.CrossRefGoogle ScholarPubMed
Wikler, K.C. & Rakic, P. (1990). Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. The Journal of Neuroscience 10, 33903401.Google ScholarPubMed
Yamada, E.S., Marshak, D.W., Silveira, L.C.L. & Casagrande, V.A. (1998). Morphology of P and M retinal ganglion cells of the bush baby. Vision Research 38, 33453352.CrossRefGoogle Scholar
Yamada, E.S., Silveira, L.C.L., Perry, V.H. & Franco, E.C.S. (2001). M and P retinal ganglion cells of the owl monkey: Morphology, size and photoreceptor convergence. Vision Research 41, 119131.CrossRefGoogle ScholarPubMed
16
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Processing of S-cone signals in the inner plexiform layer of the mammalian retina
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Processing of S-cone signals in the inner plexiform layer of the mammalian retina
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Processing of S-cone signals in the inner plexiform layer of the mammalian retina
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *