Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-xbbwl Total loading time: 0.63 Render date: 2021-02-27T08:23:48.345Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

S-cone psychophysics

Published online by Cambridge University Press:  23 April 2014

Department of Experimental Psychology, University of Oxford, Oxford, UK


We review the features of the S-cone system that appeal to the psychophysicist and summarize the celebrated characteristics of S-cone mediated vision. Two factors are emphasized: First, the fine stimulus control that is required to isolate putative visual mechanisms and second, the relationship between physiological data and psychophysical approaches. We review convergent findings from physiology and psychophysics with respect to asymmetries in the retinal wiring of S-ON and S-OFF visual pathways, and the associated treatment of increments and decrements in the S-cone system. Beyond the retina, we consider the lack of S-cone projections to superior colliculus and the use of S-cone stimuli in experimental psychology, for example to address questions about the mechanisms of visually driven attention. Careful selection of stimulus parameters enables psychophysicists to produce entirely reversible, temporary, “lesions,” and to assess behavior in the absence of specific neural subsystems.

Review Articles
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below.


Ahnelt, P.K. & Kolb, H. (2000). The mammalian photoreceptor mosaic-adaptive design. Progress in Retinal and Eye Research 19, 711777.CrossRefGoogle ScholarPubMed
Anderson, R.S., Coulter, E., Zlatkova, M.B. & Demirel, S. (2003). Short-wavelength acuity: Optical factors affecting detection and resolution of blue-yellow sinusoidal gratings in foveal and peripheral vision. Vision Research 43, 101107.CrossRefGoogle ScholarPubMed
Barboni, M.T.S., da Costa, M.F., Moura, A.L.D., et al. (2008). Visual field losses in workers exposed to mercury vapor. Environmental Research 107, 124131.CrossRefGoogle ScholarPubMed
Beirne, R.O., Mcllreavy, L. & Zlatkova, M.B. (2008). The effect of age-related lens yellowing on Farnsworth-Munsell 100 hue error score. Ophthalmic and Physiological Optics 28, 448456.CrossRefGoogle ScholarPubMed
Blake, Z., Land, T. & Mollon, J. (2008). Relative latencies of cone signals measured by a moving vernier task. Journal of Vision 8(16):16, 111.CrossRefGoogle Scholar
Bompas, A., Sterling, T., Rafal, R.D. & Sumner, P. (2008). Naso-temporal asymmetry for signals invisible to the retinotectal pathway. Journal of Neurophysiology 100, 412421.CrossRefGoogle Scholar
Bompas, A. & Sumner, P. (2008). Sensory sluggishness dissociates saccadic, manual, and perceptual responses: An S-cone study. Journal of Vision 8(8):10, 113.CrossRefGoogle ScholarPubMed
Bompas, A. & Sumner, P. (2009). Oculomotor distraction by signals invisible to the retinotectal and magnocellular pathways. Journal of Neurophysiology 102, 23872395.CrossRefGoogle ScholarPubMed
Boynton, R.M. (1978). Discriminations that depend upon blue cones. In Frontiers in Visual Science, ed. Cool, S.J. & Smith, E.L., pp. 154164. New York and Berlin: Springer-Verlag.CrossRefGoogle Scholar
Boynton, R.M. & Kaiser, P.K. (1978). Temporal analog of minimally distinct border. Vision Research 18, 111113.CrossRefGoogle Scholar
Brainard, D.H. & Stockman, A. (2009). Colorimetry. In The Optical Society of America Handbook of Optics: Vision and Vision Optics (3rd ed.) ed. Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V. & van Stryland, E., Vol. III New York: McGraw Hill.Google Scholar
Brindley, G.S., du Croz, J.J. & Rushton, W.A.H (1966). Flicker fusion frequency of blue-sensitive mechanism of colour vision. Journal of Physiology-London 183, 497500.CrossRefGoogle ScholarPubMed
Calkins, D.J. (2001). Seeing with S cones. Progress in Retinal and Eye Research 20, 255287.CrossRefGoogle ScholarPubMed
Calkins, D.J. & Sterling, P. (1996). Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina. Nature 381, 613615.CrossRefGoogle ScholarPubMed
Cavonius, C.R. & Estevez, O. (1975). Contrast sensitivity of individual color mechanisms of human vision. Journal of Physiology-London 248, 649662.CrossRefGoogle ScholarPubMed
Cole, G.R., Hine, T. & Mcilhagga, W. (1993). Detection mechanisms in L-cone, M-cone, and S-cone contrast space. Journal of the Optical Society of America A – Optics Image Science and Vision 10, 3851.CrossRefGoogle Scholar
Conway, B. (2013). Color signals through dorsal and ventral visual pathways. Visual Neuroscience 31, 197209.CrossRefGoogle Scholar
Cowey, A., Stoerig, P. & Bannister, M. (1994). Retinal ganglion-cells labeled from the pulvinar nucleus in macaque monkeys. Neuroscience 61, 691705.CrossRefGoogle Scholar
Curcio, C.A., Allen, K.A., Sloan, K.R. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. Journal of Comparative Neurology 312, 610624.CrossRefGoogle Scholar
Dacey, D.M., Crook, J.D. & Packer, O.S. (2013). Distinct synaptic mechanisms create parallel S-ON and S-Off color opponent pathways in the primate retina. Visual Neuroscience 31, 139151.CrossRefGoogle Scholar
Dacey, D.M., Lee, B.B., Stafford, D.K., Pokorny, J. & Smith, V.C. (1996). Horizontal cells of the primate retina: Cone specificity without spectral opponency. Science 271, 656659.CrossRefGoogle Scholar
Danilova, M.V. & Mollon, J.D. (2010). Parafoveal color discrimination: A chromaticity locus of enhanced discrimination. Journal of Vision 10(1):4, 19.Google ScholarPubMed
Danilova, M.V. & Mollon, J.D. (2012 a). Cardinal axes are not independent in color discrimination. Journal of the Optical Society of America A – Optics Image Science and Vision 29, A157A164.CrossRefGoogle Scholar
Danilova, M.V. & Mollon, J.D. (2012 b). Foveal color perception: Minimal thresholds at a boundary between perceptual categories. Vision Research 62, 162172.CrossRefGoogle Scholar
de Monasterio, F.M. (1978). Properties of ganglion-cells with atypical receptive-field organization in retina of macaques. Journal of Neurophysiology 41, 14351449.Google Scholar
de Monasterio, F.M., Schein, S.J. & Mccrane, E.P. (1981). Staining of blue-sensitive cones of the macaque retina by a fluorescent dye. Science 213, 12781281.CrossRefGoogle Scholar
DeMarco, P.J., Smith, V.C. & Pokorny, J. (1994). Effect of sawtooth polarity on chromatic and luminance detection. Visual Neuroscience 11, 491499.CrossRefGoogle ScholarPubMed
Derrington, A.M., Krauskopf, J. & Lennie, P. (1984 Dec). Chromatic mechanisms in lateral geniculate-nucleus of macaque. Journal of Physiology-London 357, 241265.CrossRefGoogle ScholarPubMed
Dorris, M.C., Pare, M. & Munoz, D.P. (1997). Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. Journal of Neuroscience 17, 85668579.Google ScholarPubMed
Eisner, A. & Macleod, D.I.A. (1980). Blue-sensitive cones do not contribute to luminance. Journal of the Optical Society of America 70, 121123.CrossRefGoogle Scholar
Eskew, R.T. (2009). Higher order color mechanisms: A critical review. Vision Research 49, 26862704.CrossRefGoogle Scholar
Eskew, R.T., Newton, J.R. & Giulianini, F. (2001). Chromatic detection and discrimination analyzed by a Bayesian classifier. Vision Research 41, 893909.CrossRefGoogle ScholarPubMed
Eskew, R.T. Jr., McLellan, J.S. & Giulianini, F. (1999). Chromatic detection and discrimination. In Color Vision: From Genes to Perception, ed. Gegenfurtner, K. & Sharpe, L.T., pp. 345368. Cambridge: Cambridge University Press.Google Scholar
Feitosa-Santana, C., Barboni, M.T.S., Oiwa, N.N. (2008). Irreversible color vision losses in patients with chronic mercury vapor intoxication. Visual Neuroscience 25, 487491.CrossRefGoogle ScholarPubMed
Felius, J. & Swanson, W.H. (2003). Effects of cone adaptation on variability in S-cone increment thresholds. Investigative Ophthalmology & Visual Science 44, 41404146.CrossRefGoogle ScholarPubMed
Felsten, G., Benevento, L.A. & Burman, D. (1983). Opponent-color responses in macaque extrageniculate visual pathways - The lateral pulvinar. Brain Research 288, 363367.CrossRefGoogle ScholarPubMed
Field, G.D., Sher, A., Gauthier, J.L. (2007). Spatial properties and functional organization of small bistratified ganglion cells in primate retina. Journal of Neuroscience 27, 1326113272.CrossRefGoogle Scholar
Gegenfurtner, K.R. & Kiper, D.C. (1992). Contrast detection in luminance and chromatic noise. Journal of the Optical Society of America A – Optics Image Science and Vision 9, 18801888.CrossRefGoogle Scholar
Glezer, V.D. (1965). The receptive fields of the retina. Vision Research 5, 497525.CrossRefGoogle ScholarPubMed
Greenstein, V.C., Hood, D.C., Ritch, R., Steinberger, D. & Carr, R.E. (1989). S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Investigative Ophthalmology & Visual Science 30, 17321737.Google ScholarPubMed
Haegerstrom-Portnoy, G., Hewlett, S.E. & Barr, S.A.N. (1989). S cone loss with aging. Documenta Ophthalmologica Proceeding Series 52, 345352.CrossRefGoogle Scholar
Hammond, B.R., Wooten, B.R. & Snodderly, D.M. (1997). Individual variations in the spatial profile of human macular pigment. Journal of the Optical Society of America A – Optics Image Science and Vision 14, 11871196.CrossRefGoogle ScholarPubMed
Hansen, T. & Gegenfurtner, K.R. (2013). Higher order color mechanisms: Evidence from noise-masking experiments in cone contrast space. Journal of Vision 13(1):26, 121.CrossRefGoogle ScholarPubMed
Hess, R.F., Mullen, K.T. & Zrenner, E. (1989). Human photopic vision with only short wavelength cones: Post-receptoral properties. Journal of Physiology-London 417, 151172.CrossRefGoogle ScholarPubMed
Hunt, D.M. & Peichl, L. (2013). S cones: Evolution, retinal distribution, development, and spectral sensitivity. Visual Neuroscience 31, 115138.CrossRefGoogle ScholarPubMed
Ikeda, M. (1965). Temporal summation of positive and negative flashes in visual system. Journal of the Optical Society of America 55, 15271533.CrossRefGoogle Scholar
Ikeda, M. (1986). Temporal impulse-response. Vision Research 26, 14311440.CrossRefGoogle Scholar
Ives, H.E. (1912). Studies in the photometry of lights of different colours. I. Spectral luminosity curves obtained by the equality of brightness photometer and flicker photometer under similar conditions. Philosophical Magazine Series 6, 149188.CrossRefGoogle Scholar
Jacobs, G.H. (1993). The distribution and nature of color-vision among the mammals. Biological Reviews of the Cambridge Philosophical Society 68, 413471.CrossRefGoogle ScholarPubMed
Jonides, J. (1981). Voluntary vs automatic control over the mind’s eye’s movement. In Attention and Performance IX, ed. Long, J.B. & Baddeley, A.D., pp. 187203. Hillsdale, NJ: Erlbaum.Google Scholar
Jusuf, P.R., Martin, P.R. & Grunert, U. (2006). Random wiring in the midget pathway of primate retina. Journal of Neuroscience 26, 39083917.CrossRefGoogle Scholar
Kelly, D.H. (1974). Spatio-temporal frequency characteristics of color-vision mechanisms. Journal of the Optical Society of America 64, 983990.CrossRefGoogle Scholar
Klug, K., Tsukamoto, Y., Sterling, P. & Schein, S.J. (1993). Blue cone off-midget ganglion-cells in macaque. Investigative Ophthalmology & Visual Science 34, 986.Google Scholar
Knoblauch, K., Saunders, F., Kusuda, M. (1987). Age and illuminance effects in the Farnsworth-Munsell 100-Hue test. Applied Optics 26, 14411448.CrossRefGoogle ScholarPubMed
Krauskopf, J., Williams, D.R. & Heeley, D.W. (1982). Cardinal directions of color space. Vision Research 22, 11231131.CrossRefGoogle Scholar
Krauskopf, J., Williams, D.R., Mandler, M.B. & Brown, A.M. (1986). Higher-order color mechanisms. Vision Research 26, 2332.CrossRefGoogle ScholarPubMed
Krauskopf, J. & Zaidi, Q. (1986). Induced desensitization. Vision Research 26, 759762.CrossRefGoogle ScholarPubMed
Kremers, J., Lee, B.B., Pokorny, J. & Smith, V.C. (1993). Responses of macaque ganglion-cells and human observers to compound periodic wave-forms. Vision Research 33, 19972011.CrossRefGoogle Scholar
Kustov, A.A. & Robinson, D.L. (1996). Shared neural control of attentional shifts and eye movements. Nature 384, 7477.CrossRefGoogle Scholar
Laties, A.M. & Zrenner, E. (2002). Viagra(R) (sildenafil citrate) and ophthalmology. Progress in Retinal and Eye Research 21, 485506.CrossRefGoogle Scholar
Lee, B.B., Kremers, J. & Yeh, T. (1998). Receptive fields of primate retinal ganglion cells studied with a novel technique. Visual Neuroscience 15, 161175.CrossRefGoogle ScholarPubMed
Lee, B.B., Martin, P.R. & Valberg, A. (1989). Nonlinear summation of M-cone and L-cone inputs to phasic retinal ganglion-cells of the macaque. Journal of Neuroscience 9, 14331442.Google ScholarPubMed
Lee, J. & Stromeyer, C.F. (1989). Contribution of human short-wave cones to luminance and motion detection. Journal of Physiology-London 413, 563593.CrossRefGoogle ScholarPubMed
Lee, R.J., Mollon, J.D., Zaidi, Q. & Smithson, H.E. (2009). Latency characteristics of the short-wavelength-sensitive cones and their associated pathways. Journal of Vision 9(12):5, 117.CrossRefGoogle ScholarPubMed
Leh, S.E., Mullen, K.T. & Ptito, A. (2006). Absence of S-cone input in human blindsight following hemispherectomy. European Journal of Neuroscience 24, 29542960.CrossRefGoogle ScholarPubMed
Leh, S.E., Ptito, A., Schonwiesner, M., Chakravarty, M.M. & Mullen, K.T. (2010). Blindsight mediated by an S-cone-independent collicular pathway: An fMRI study in hemispherectomized subjects. Journal of Cognitive Neuroscience 22, 670682.CrossRefGoogle ScholarPubMed
Lennie, P., Haake, P.W. & Williams, D.R. (1991). The design of chromatically opponent receptive fields. In Computational Models of Visual Processing, ed. Landy, M.S. & Movshon, J.A., pp. 7182. Cambridge, MA: MIT Press.Google Scholar
Lennie, P., Pokorny, J. & Smith, V.C. (1993). Luminance. Journal of the Optical Society of America A – Optics Image Science and Vision 10, 12831293.CrossRefGoogle ScholarPubMed
Macleod, D.I.A. & Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831186.CrossRefGoogle ScholarPubMed
Macleod, D.I.A. & He, S. (1993). Visible flicker from invisible patterns. Nature 361, 256258.CrossRefGoogle ScholarPubMed
Malpeli, J.G. & Schiller, P.H. (1978). Lack of blue Off-center cells in visual-system of monkey. Brain Research 141, 385389.CrossRefGoogle ScholarPubMed
Marrocco, R.T. & Li, R.H. (1977). Monkey superior colliculus: Properties of single cells and their afferent inputs. Journal of Neurophysiology 40, 844860.Google ScholarPubMed
Marshak, D. W., & Mills, S. L. (2013). Short-wavelength cone-opponent retinal ganglion cells in mammals. Visual Neuroscience 31, 165175.CrossRefGoogle ScholarPubMed
Marshall, J. (1987). The aging retina: Physiology or pathology. Eye-Transactions of the Ophthalmological Societies of the United Kingdom 1, 282295.Google ScholarPubMed
Martin, P.R. & Lee, B.B. (2013). Distribution and specificity of S-cone (“blue cone”) signals in subcortical visual pathways. Visual Neuroscience 31, 177187.CrossRefGoogle ScholarPubMed
McKeefry, D.J., Parry, N.R.A. & Murray, I.J. (2003). Simple reaction times in color space: The influence of chromaticity, contrast, and cone opponency. Investigative Ophthalmology & Visual Science 44, 22672276.CrossRefGoogle ScholarPubMed
McLellan, J.S. & Eskew, R.T. (2000). ON and OFF S-cone pathways have different long-wave cone inputs. Vision Research 40, 24492465.CrossRefGoogle ScholarPubMed
McLellan, J.S., Marcos, S., Prieto, P.M. & Burns, S.A. (2002). Imperfect optics may be the eye’s defence against chromatic blur. Nature 417, 174176.CrossRefGoogle ScholarPubMed
Metha, A.B. & Lennie, P. (2001). Transmission of spatial information in S-cone pathways. Visual Neuroscience 18, 961972.CrossRefGoogle Scholar
Miyagishima, K.J., Grunert, U., & Li, W. (2013). Processing of S-cone signals in the inner plexiform layer of the mammalian retina. Visual Neuroscience 31, 153163.CrossRefGoogle ScholarPubMed
Mollon, J.D. (1982 a). Color vision. Annual Review of Psychology 33, 4185.CrossRefGoogle ScholarPubMed
Mollon, J.D. (1982 b). A taxonomy of tritanopias. Documenta Ophthalmologica Proceedings Series 33, 87101.Google Scholar
Mollon, J.D. (1982 c). What is odd about the short-wavelength mechanism and why is it disproportionately vulnerable to acquired damage? Documenta Ophthalmologica Proceedings Series 33, 145149.Google Scholar
Mollon, J.D. (1989). Tho she kneeld in that place where they grew… The uses and origins of primate color-vision. Journal of Experimental Biology 146, 2138.Google Scholar
Mollon, J.D. & Krauskopf, J. (1973). Reaction-time as a measure of temporal response properties of individual color mechanisms. Vision Research 13, 2740.CrossRefGoogle Scholar
Mollon, J.D. & Polden, P.G. (1975). Colour illusion and evidence for interaction between colour mechanisms. Nature 258, 421422.CrossRefGoogle Scholar
Moreland, J.D. & Bhatt, P. (1984). Retinal distribution of macular pigment. In Colour Vision Deficiencies VII, ed. Verriest, G., pp. 127132. The Hague: Dr W Junk Publishers.CrossRefGoogle Scholar
Olivier, E., Dorris, M.C. & Munoz, D.P. (1999). Lateral interactions in the superior colliculus, not an extended fixation zone, can account for the remote distracter effect. Behavioral and Brain Sciences 22, 694695.CrossRefGoogle Scholar
Organisciak, D.T. & Vaughan, D.K. (2010). Retinal light damage: Mechanisms and protection. Progress in Retinal and Eye Research 29, 113134.CrossRefGoogle ScholarPubMed
Pokorny, J., Smith, V.C. & Lutze, M. (1987). Aging of the human lens. Applied Optics 26, 14371440.CrossRefGoogle ScholarPubMed
Pokorny, J., Smithson, H. & Quinlan, J. (2004). Photostimulator allowing independent control of rods and the three cone types. Visual Neuroscience 21, 263267.CrossRefGoogle ScholarPubMed
Polden, P.G. & Mollon, J.D. (1980). Reversed effect of adapting stimuli on visual sensitivity. Proceedings of the Royal Society B-Biological Sciences 210, 235272.CrossRefGoogle ScholarPubMed
Posner, M.I. (1980 Feb). Orienting of attention. Quarterly Journal of Experimental Psychology 32, 325.CrossRefGoogle Scholar
Pugh, E.N. & Mollon, J.D. (1979). A theory of the pi-1 and pi-3 color mechanisms of Stiles. Vision Research 19, 293312.CrossRefGoogle Scholar
Pulos, E., Teller, D.Y. & Buck, S.L. (1980). Infant color-vision - A search for short-wavelength-sensitive mechanisms by means of chromatic adaptation. Vision Research 20, 485493.CrossRefGoogle Scholar
Racheva, K. & Vassilev, A. (2008). Sensitivity to stimulus onset and offset in the S-cone pathway. Vision Research 48, 11251136.CrossRefGoogle Scholar
Rafal, R., Henik, A. & Smith, J. (1991). Extrageniculate contributions to reflex visual orienting in normal humans: a temporal hemifield advantage. Journal of Cognitive Neuroscience 3, 322328.CrossRefGoogle ScholarPubMed
Redmond, T., Zlatkova, M.B., Vassilev, A., Garway-Heath, D.F. & Anderson, R.S. (2013). Changes in Ricco’s area with background luminance in the S-cone pathway. Optometry and Vision Science 90, 6674.CrossRefGoogle Scholar
Reid, R.C. & Shapley, R.M. (1992). Spatial structure of cone inputs to receptive-fields in primate lateral geniculate-nucleus. Nature 356, 716718.CrossRefGoogle ScholarPubMed
Reid, R.C. & Shapley, R.M. (2002). Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. Journal of Neuroscience 22, 61586175.Google ScholarPubMed
Ripamonti, C., Woo, W.L., Crowther, E. & Stockman, A. (2009). The S-cone contribution to luminance depends on the M- and L-cone adaptation levels: Silent surrounds? Journal of Vision 9(3):10, 116.CrossRefGoogle Scholar
Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia 25, 3140.CrossRefGoogle ScholarPubMed
Sankeralli, M.J. & Mullen, K.T. (1996). Estimation of the L, M-, and S-cone weights of the postreceptoral detection mechanisms. Journal of the Optical Society of America A – Optics Image Science and Vision 13, 906915.CrossRefGoogle Scholar
Schefrin, B.E., Werner, J.S., Plach, M., Utlaut, N. & Switkes, E. (1992). Sites of age-related sensitivity loss in a short-wave cone pathway. Journal of the Optical Society of America A – Optics Image Science 9, 355363.CrossRefGoogle Scholar
Schiller, P.H. & Malpeli, J.G. (1977). Properties and tectal projections of monkey retinal ganglion-cells. Journal of Neurophysiology 40, 428445.Google ScholarPubMed
Schwartz, S.H. (1996). Spectral sensitivity as revealed by isolated step onsets and step offsets. Ophthalmic and Physiological Optics 16, 5863.CrossRefGoogle ScholarPubMed
Shinomori, K., Spillmann, L. & Werner, J.S. (1999). S-cone signals to temporal OFF-channels: asymmetrical connections to postreceptoral chromatic mechanisms. Vision Research 39, 3949.CrossRefGoogle Scholar
Shinomori, K. & Werner, J.S. (2008). The impulse response of S-cone pathways in detection of increments and decrements. Visual Neuroscience 25, 341347.CrossRefGoogle Scholar
Shinomori, K. & Werner, J.S. (2012). Aging of human short-wave cone pathways. Proceedings of the National Academy of Sciences of the United States of America 109, 1342213427.CrossRefGoogle ScholarPubMed
Smith, V.C., Lee, B.B., Pokorny, J., Martin, P.R. & Valberg, A. (1992). Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights. Journal of Physiology-London 458, 191221.CrossRefGoogle ScholarPubMed
Smithson, H.E. & Mollon, J.D. (2001). Forward and backward masking with brief chromatic stimuli. Color Research and Application 26, S165S169.3.0.CO;2-8>CrossRefGoogle Scholar
Smithson, H.E. & Mollon, J.D. (2004). Is the S-opponent chromatic sub-system sluggish? Vision Research 44, 29192929.CrossRefGoogle ScholarPubMed
Smithson, H.E., Sumner, P. & Mollon, J.D. (2003). How to find a tritan line. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 279287. Oxford: Oxford University Press.CrossRefGoogle Scholar
Sparks, D.L. (1986). Translation of sensory signals into commands for control of saccadic eye-movements - Role of primate superior colliculus. Physiological Reviews 66, 118171.Google Scholar
Sterling, P. (1973 May). Quantitative mapping with electron-microscope: Retinal terminals in superior colliculus. Brain Research 54, 347354.CrossRefGoogle Scholar
Stiles, W.S. (1949). Increment thresholds and the mechanisms of colour vision. Documenta Ophthalmologica 3, 138165.CrossRefGoogle ScholarPubMed
Stiles, W.S. (1959). Color vision - The approach through increment-threshold sensitivity. Proceedings of the National Academy of Sciences of the United States of America 45, 100114.CrossRefGoogle Scholar
Stockman, A. & Brainard, D.H. (2009). Color vision mechanisms. In The Optical Society of America Handbook of Optics, Vol. 3, Vision and Vision Optics (3rd ed.), ed. Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V. & Van Stryland, E., pp. 11.1–11.104. New York: McGraw Hill.Google Scholar
Stockman, A., Langendorfer, M., Smithson, H.E. & Sharpe, L.T. (2006). Human cone light adaptation: From behavioral measurements to molecular mechanisms. Journal of Vision 6, 11941213.CrossRefGoogle Scholar
Stockman, A., Macleod, D.I.A. & Depriest, D.D. (1991). The temporal properties of the human short-wave photoreceptors and their associated pathways. Vision Research 31, 189208.CrossRefGoogle ScholarPubMed
Stockman, A. & Sharpe, L.T. (1999). Cone spectral sensitivities and color matching. In Color vision: From Genes to Perception, ed. Gegenfurtner, K. & Sharpe, L.T., pp. 5387. Cambridge: Cambridge University Press.Google Scholar
Stockman, A. & Sharpe, L.T. (2000 a). The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Research 40, 17111737.CrossRefGoogle ScholarPubMed
Stockman, A. & Sharpe, L.T. (2000 b). Tritanopic color matches and the middle- and long-wavelength-sensitive cone spectral sensitivities. Vision Research 40, 17391750.CrossRefGoogle Scholar
Stockman, A., Sharpe, L.T. & Fach, C. (1999). The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches. Vision Research 39, 29012927.CrossRefGoogle Scholar
Stockman, A., Sharpe, L.T., Tufail, A., Kell, P.D., Ripamonti, C. & Jeffery, G. (2007). The effect of sildenafil citrate (Viagra (R)) on visual sensitivity. Journal of Vision 7(8):4, 115.CrossRefGoogle Scholar
Stringham, N.T., Sabatinelli, D. & Stringham, J.M. (2013). A potential mechanism for compensation in the blue - yellow visual channel. Frontiers in Human Neuroscience, 7:331, 16.CrossRefGoogle Scholar
Stromeyer, C.F., Chaparro, A., Rodriguez, C., Chen, D., Hu, E. & Kronauer, R.E. (1998). Short-wave cone signal in the red-green detection mechanism. Vision Research 38, 813826.CrossRefGoogle Scholar
Stromeyer, C.F., Eskew, R.T., Kronauer, R.E. & Spillmann, L. (1991). Temporal phase response of the short-wave cone signal for color and luminance. Vision Research 31, 787803.CrossRefGoogle ScholarPubMed
Stromeyer, C.F., Kranda, K. & Sternheim, C.E. (1978). Selective chromatic adaptation at different spatial-frequencies. Vision Research 18, 427437.CrossRefGoogle ScholarPubMed
Sumner, P., Adamjee, T. & Mollon, J.D. (2002). Signals invisible to the collicular and magnocellular pathways can capture visual attention. Current Biology 12, 13121316.CrossRefGoogle ScholarPubMed
Sumner, P., Nachev, P., Vora, N., Husain, M. & Kennard, C. (2004). Distinct cortical and collicular mechanisms of inhibition of return revealed with S cone stimuli. Current Biology 14, 22592263.CrossRefGoogle ScholarPubMed
Sun, H., Smithson, H.E., Zaidi, Q. & Lee, B.B. (2006). Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input? Visual Neuroscience 23, 441446.CrossRefGoogle ScholarPubMed
Tailby, C., Cheong, S.K., Pietersen, A.N., Solomon, S.G. & Martin, P.R. (2012). Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys. Journal of Physiology-London 590, 40614077.CrossRefGoogle ScholarPubMed
Tailby, C., Solomon, S.G., Dhruv, N.T. & Lennie, P. (2008 a). Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience 28, 11311139.CrossRefGoogle ScholarPubMed
Tailby, C., Solomon, S.G. & Lennie, P. (2008 b). Functional asymmetries in visual pathways carrying S-cone signals in macaque. Journal of Neuroscience 28, 40784087.CrossRefGoogle Scholar
Tansley, B.W. & Boynton, R.M. (1976). A Line, not a space, represents visual distinctness of borders formed by different colors. Science 191, 954957.CrossRefGoogle Scholar
Tansley, B.W. & Boynton, R.M. (1978). Chromatic border perception - role of red-sensitive and green-sensitive cones. Vision Research 18, 683697.CrossRefGoogle Scholar
Teller, D.Y., Peeples, D.R. & Sekel, M. (1978). Discrimination of chromatic from white-light by two-month-old human infants. Vision Research 18, 4148.CrossRefGoogle ScholarPubMed
Terasaki, H., Miyake, Y., Nomura, R., Horiguchi, M., Suzuki, S. & Kondo, M. (1999). Blue-on-yellow perimetry in the complete type of congenital stationary night blindness. Investigative Ophthalmology & Visual Science 40, 27612764.Google ScholarPubMed
Valberg, A. (2001). Unique hues: An old problem for a new generation. Vision Research 41, 16451657.CrossRefGoogle ScholarPubMed
Valberg, A., Lee, B.B. & Tigwell, D.A. (1986). Neurons with strong inhibitory S-cone inputs in the macaque lateral geniculate-nucleus. Vision Research 26, 10611064.CrossRefGoogle ScholarPubMed
Vassilev, A., Ivanov, I., Zlatkova, M.B. & Anderson, R.S. (2005). Human S-cone vision: Relationship between perceptive field and ganglion cell dendritic field. Journal of Vision 5, 823833.CrossRefGoogle ScholarPubMed
Vassilev, A., Murzac, A., Zlatkova, M.B. & Anderson, R.S. (2009). On the search for an appropriate metric for reaction time to suprathreshold increments and decrements. Vision Research 49, 524529.CrossRefGoogle ScholarPubMed
Vassilev, A., Zlatkova, M., Manahilov, V., Krumov, A. & Schaumberger, M. (2000). Spatial summation of blue-on-yellow light increments and decrements in human vision. Vision Research 40, 9891000.CrossRefGoogle Scholar
Verdon, W. & Adams, A.J. (1987). Short-wavelength-sensitive cones do not contribute to mesopic luminosity. Journal of the Optical Society of America A – Optics and Image Science 4, 9195.CrossRefGoogle Scholar
Verriest, G., Vanlaethem, J. & Uvijls, A. (1982). A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test-scores. American Journal of Ophthalmology 93, 635642.CrossRefGoogle ScholarPubMed
Volbrecht, V.J. & Werner, J.S. (1987). Isolation of short-wavelength-sensitive cone photoreceptors in 4–6-week-old human infants. Vision Research 27, 469478.CrossRefGoogle ScholarPubMed
Webster, M.A., Devalois, K.K. & Switkes, E. (1990). Orientation and spatial-frequency discrimination for luminance and chromatic gratings. Journal of the Optical Society of America A – Optics and Image Science 7, 10341049.CrossRefGoogle ScholarPubMed
Webster, M.A. & Mollon, J.D. (1994). The influence of contrast adaptation on color appearance. Vision Research 34, 19932020.CrossRefGoogle ScholarPubMed
Weiskrantz, L., Warrington, E.K., Sanders, M.D. & Marshall, J. (1974). Visual capacity in hemianopic field following a restricted occipital ablation. Brain 97, 709728.CrossRefGoogle ScholarPubMed
Werner, J.S. (1996). Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span. Progress in Retinal and Eye Research 15, 621645.CrossRefGoogle Scholar
Werner, J.S., Bieber, M.L. & Schefrin, B.E. (2000). Senescence of foveal and parafoveal cone sensitivities and their relations to macular pigment density. Journal of the Optical Society of America A – Optics Image Science and Vision 17, 19181932.CrossRefGoogle ScholarPubMed
Williams, C., Azzopardi, P. & Cowey, A. (1995). Nasal and temporal retinal ganglion-cells projecting to the midbrain: Implications for blindsight. Neuroscience 65, 577586.CrossRefGoogle ScholarPubMed
Williams, D.R., Collier, R.J. & Thompson, B.J. (1983). Spatial resolution of the short-wavelength mechanism. In Colour Vision: Physiology and Psychophysics, ed. Mollon, J.D. & Sharpe, L.T., pp. 487503. London: Academic.Google Scholar
Williams, D.R., Macleod, D.I.A. & Hayhoe, M.M. (1981). Punctate sensitivity of the blue-sensitive mechanism. Vision Research 21, 13571375.CrossRefGoogle ScholarPubMed
Wisowaty, J.J. & Boynton, R.M. (1980). Temporal-modulation sensitivity of the blue mechanism: Measurements made without chromatic adaptation. Vision Research 20, 895909.CrossRefGoogle ScholarPubMed
Wyszecki, G. & Stiles, W.S. (1982). Color Science: Concepts and Methods. Quantitative Data and Formulae. New York: Wiley.Google Scholar
Xiao, Y. (2013). Processing of the S-cone signals in the early visual cortex of primates. Visual Neuroscience 31, 189195.CrossRefGoogle ScholarPubMed
Zaidi, Q. & Halevy, D. (1993). Visual mechanisms that signal the direction of color changes. Vision Research 33, 10371051.CrossRefGoogle ScholarPubMed
Zele, A.J., Cao, D.C. & Pokorny, J. (2007). Threshold units: A correct metric for reaction time? Vision Research 47, 608611.CrossRefGoogle Scholar
Zlatkova, M.B., Vassilev, A. & Anderson, R.S. (2008). Resolution acuity for equiluminant gratings of S-cone positive or negative contrast in human vision. Journal of Vision 8(3):9, 110.CrossRefGoogle ScholarPubMed
Zrenner, E. & Gouras, P. (1981). Characteristics of the blue sensitive cone mechanism in primate retinal ganglion-cells. Vision Research 21, 16051609.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 47
Total number of PDF views: 275 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

S-cone psychophysics
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

S-cone psychophysics
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

S-cone psychophysics
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *