Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T00:38:07.149Z Has data issue: false hasContentIssue false

S-cone psychophysics

Published online by Cambridge University Press:  23 April 2014

HANNAH E. SMITHSON*
Affiliation:
Department of Experimental Psychology, University of Oxford, Oxford, UK

Abstract

We review the features of the S-cone system that appeal to the psychophysicist and summarize the celebrated characteristics of S-cone mediated vision. Two factors are emphasized: First, the fine stimulus control that is required to isolate putative visual mechanisms and second, the relationship between physiological data and psychophysical approaches. We review convergent findings from physiology and psychophysics with respect to asymmetries in the retinal wiring of S-ON and S-OFF visual pathways, and the associated treatment of increments and decrements in the S-cone system. Beyond the retina, we consider the lack of S-cone projections to superior colliculus and the use of S-cone stimuli in experimental psychology, for example to address questions about the mechanisms of visually driven attention. Careful selection of stimulus parameters enables psychophysicists to produce entirely reversible, temporary, “lesions,” and to assess behavior in the absence of specific neural subsystems.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahnelt, P.K. & Kolb, H. (2000). The mammalian photoreceptor mosaic-adaptive design. Progress in Retinal and Eye Research 19, 711777.CrossRefGoogle ScholarPubMed
Anderson, R.S., Coulter, E., Zlatkova, M.B. & Demirel, S. (2003). Short-wavelength acuity: Optical factors affecting detection and resolution of blue-yellow sinusoidal gratings in foveal and peripheral vision. Vision Research 43, 101107.Google Scholar
Barboni, M.T.S., da Costa, M.F., Moura, A.L.D., et al. (2008). Visual field losses in workers exposed to mercury vapor. Environmental Research 107, 124131.Google Scholar
Beirne, R.O., Mcllreavy, L. & Zlatkova, M.B. (2008). The effect of age-related lens yellowing on Farnsworth-Munsell 100 hue error score. Ophthalmic and Physiological Optics 28, 448456.CrossRefGoogle ScholarPubMed
Blake, Z., Land, T. & Mollon, J. (2008). Relative latencies of cone signals measured by a moving vernier task. Journal of Vision 8(16):16, 111.CrossRefGoogle ScholarPubMed
Bompas, A., Sterling, T., Rafal, R.D. & Sumner, P. (2008). Naso-temporal asymmetry for signals invisible to the retinotectal pathway. Journal of Neurophysiology 100, 412421.CrossRefGoogle Scholar
Bompas, A. & Sumner, P. (2008). Sensory sluggishness dissociates saccadic, manual, and perceptual responses: An S-cone study. Journal of Vision 8(8):10, 113.Google Scholar
Bompas, A. & Sumner, P. (2009). Oculomotor distraction by signals invisible to the retinotectal and magnocellular pathways. Journal of Neurophysiology 102, 23872395.Google Scholar
Boynton, R.M. (1978). Discriminations that depend upon blue cones. In Frontiers in Visual Science, ed. Cool, S.J. & Smith, E.L., pp. 154164. New York and Berlin: Springer-Verlag.Google Scholar
Boynton, R.M. & Kaiser, P.K. (1978). Temporal analog of minimally distinct border. Vision Research 18, 111113.Google Scholar
Brainard, D.H. & Stockman, A. (2009). Colorimetry. In The Optical Society of America Handbook of Optics: Vision and Vision Optics (3rd ed.) ed. Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V. & van Stryland, E., Vol. III New York: McGraw Hill.Google Scholar
Brindley, G.S., du Croz, J.J. & Rushton, W.A.H (1966). Flicker fusion frequency of blue-sensitive mechanism of colour vision. Journal of Physiology-London 183, 497500.CrossRefGoogle ScholarPubMed
Calkins, D.J. (2001). Seeing with S cones. Progress in Retinal and Eye Research 20, 255287.Google Scholar
Calkins, D.J. & Sterling, P. (1996). Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina. Nature 381, 613615.Google Scholar
Cavonius, C.R. & Estevez, O. (1975). Contrast sensitivity of individual color mechanisms of human vision. Journal of Physiology-London 248, 649662.Google Scholar
Cole, G.R., Hine, T. & Mcilhagga, W. (1993). Detection mechanisms in L-cone, M-cone, and S-cone contrast space. Journal of the Optical Society of America A – Optics Image Science and Vision 10, 3851.Google Scholar
Conway, B. (2013). Color signals through dorsal and ventral visual pathways. Visual Neuroscience 31, 197209.Google Scholar
Cowey, A., Stoerig, P. & Bannister, M. (1994). Retinal ganglion-cells labeled from the pulvinar nucleus in macaque monkeys. Neuroscience 61, 691705.CrossRefGoogle ScholarPubMed
Curcio, C.A., Allen, K.A., Sloan, K.R. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. Journal of Comparative Neurology 312, 610624.Google Scholar
Dacey, D.M., Crook, J.D. & Packer, O.S. (2013). Distinct synaptic mechanisms create parallel S-ON and S-Off color opponent pathways in the primate retina. Visual Neuroscience 31, 139151.Google Scholar
Dacey, D.M., Lee, B.B., Stafford, D.K., Pokorny, J. & Smith, V.C. (1996). Horizontal cells of the primate retina: Cone specificity without spectral opponency. Science 271, 656659.Google Scholar
Danilova, M.V. & Mollon, J.D. (2010). Parafoveal color discrimination: A chromaticity locus of enhanced discrimination. Journal of Vision 10(1):4, 19.Google Scholar
Danilova, M.V. & Mollon, J.D. (2012 a). Cardinal axes are not independent in color discrimination. Journal of the Optical Society of America A – Optics Image Science and Vision 29, A157A164.Google Scholar
Danilova, M.V. & Mollon, J.D. (2012 b). Foveal color perception: Minimal thresholds at a boundary between perceptual categories. Vision Research 62, 162172.Google Scholar
de Monasterio, F.M. (1978). Properties of ganglion-cells with atypical receptive-field organization in retina of macaques. Journal of Neurophysiology 41, 14351449.CrossRefGoogle ScholarPubMed
de Monasterio, F.M., Schein, S.J. & Mccrane, E.P. (1981). Staining of blue-sensitive cones of the macaque retina by a fluorescent dye. Science 213, 12781281.Google Scholar
DeMarco, P.J., Smith, V.C. & Pokorny, J. (1994). Effect of sawtooth polarity on chromatic and luminance detection. Visual Neuroscience 11, 491499.CrossRefGoogle ScholarPubMed
Derrington, A.M., Krauskopf, J. & Lennie, P. (1984 Dec). Chromatic mechanisms in lateral geniculate-nucleus of macaque. Journal of Physiology-London 357, 241265.Google Scholar
Dorris, M.C., Pare, M. & Munoz, D.P. (1997). Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. Journal of Neuroscience 17, 85668579.Google Scholar
Eisner, A. & Macleod, D.I.A. (1980). Blue-sensitive cones do not contribute to luminance. Journal of the Optical Society of America 70, 121123.Google Scholar
Eskew, R.T. (2009). Higher order color mechanisms: A critical review. Vision Research 49, 26862704.Google Scholar
Eskew, R.T., Newton, J.R. & Giulianini, F. (2001). Chromatic detection and discrimination analyzed by a Bayesian classifier. Vision Research 41, 893909.Google Scholar
Eskew, R.T. Jr., McLellan, J.S. & Giulianini, F. (1999). Chromatic detection and discrimination. In Color Vision: From Genes to Perception, ed. Gegenfurtner, K. & Sharpe, L.T., pp. 345368. Cambridge: Cambridge University Press.Google Scholar
Feitosa-Santana, C., Barboni, M.T.S., Oiwa, N.N. (2008). Irreversible color vision losses in patients with chronic mercury vapor intoxication. Visual Neuroscience 25, 487491.Google Scholar
Felius, J. & Swanson, W.H. (2003). Effects of cone adaptation on variability in S-cone increment thresholds. Investigative Ophthalmology & Visual Science 44, 41404146.Google Scholar
Felsten, G., Benevento, L.A. & Burman, D. (1983). Opponent-color responses in macaque extrageniculate visual pathways - The lateral pulvinar. Brain Research 288, 363367.Google Scholar
Field, G.D., Sher, A., Gauthier, J.L. (2007). Spatial properties and functional organization of small bistratified ganglion cells in primate retina. Journal of Neuroscience 27, 1326113272.Google Scholar
Gegenfurtner, K.R. & Kiper, D.C. (1992). Contrast detection in luminance and chromatic noise. Journal of the Optical Society of America A – Optics Image Science and Vision 9, 18801888.Google Scholar
Glezer, V.D. (1965). The receptive fields of the retina. Vision Research 5, 497525.Google Scholar
Greenstein, V.C., Hood, D.C., Ritch, R., Steinberger, D. & Carr, R.E. (1989). S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Investigative Ophthalmology & Visual Science 30, 17321737.Google ScholarPubMed
Haegerstrom-Portnoy, G., Hewlett, S.E. & Barr, S.A.N. (1989). S cone loss with aging. Documenta Ophthalmologica Proceeding Series 52, 345352.Google Scholar
Hammond, B.R., Wooten, B.R. & Snodderly, D.M. (1997). Individual variations in the spatial profile of human macular pigment. Journal of the Optical Society of America A – Optics Image Science and Vision 14, 11871196.Google Scholar
Hansen, T. & Gegenfurtner, K.R. (2013). Higher order color mechanisms: Evidence from noise-masking experiments in cone contrast space. Journal of Vision 13(1):26, 121.Google Scholar
Hess, R.F., Mullen, K.T. & Zrenner, E. (1989). Human photopic vision with only short wavelength cones: Post-receptoral properties. Journal of Physiology-London 417, 151172.Google Scholar
Hunt, D.M. & Peichl, L. (2013). S cones: Evolution, retinal distribution, development, and spectral sensitivity. Visual Neuroscience 31, 115138.Google Scholar
Ikeda, M. (1965). Temporal summation of positive and negative flashes in visual system. Journal of the Optical Society of America 55, 15271533.Google Scholar
Ikeda, M. (1986). Temporal impulse-response. Vision Research 26, 14311440.Google Scholar
Ives, H.E. (1912). Studies in the photometry of lights of different colours. I. Spectral luminosity curves obtained by the equality of brightness photometer and flicker photometer under similar conditions. Philosophical Magazine Series 6, 149188.Google Scholar
Jacobs, G.H. (1993). The distribution and nature of color-vision among the mammals. Biological Reviews of the Cambridge Philosophical Society 68, 413471.Google Scholar
Jonides, J. (1981). Voluntary vs automatic control over the mind’s eye’s movement. In Attention and Performance IX, ed. Long, J.B. & Baddeley, A.D., pp. 187203. Hillsdale, NJ: Erlbaum.Google Scholar
Jusuf, P.R., Martin, P.R. & Grunert, U. (2006). Random wiring in the midget pathway of primate retina. Journal of Neuroscience 26, 39083917.Google Scholar
Kelly, D.H. (1974). Spatio-temporal frequency characteristics of color-vision mechanisms. Journal of the Optical Society of America 64, 983990.Google Scholar
Klug, K., Tsukamoto, Y., Sterling, P. & Schein, S.J. (1993). Blue cone off-midget ganglion-cells in macaque. Investigative Ophthalmology & Visual Science 34, 986.Google Scholar
Knoblauch, K., Saunders, F., Kusuda, M. (1987). Age and illuminance effects in the Farnsworth-Munsell 100-Hue test. Applied Optics 26, 14411448.Google Scholar
Krauskopf, J., Williams, D.R. & Heeley, D.W. (1982). Cardinal directions of color space. Vision Research 22, 11231131.CrossRefGoogle ScholarPubMed
Krauskopf, J., Williams, D.R., Mandler, M.B. & Brown, A.M. (1986). Higher-order color mechanisms. Vision Research 26, 2332.CrossRefGoogle ScholarPubMed
Krauskopf, J. & Zaidi, Q. (1986). Induced desensitization. Vision Research 26, 759762.Google Scholar
Kremers, J., Lee, B.B., Pokorny, J. & Smith, V.C. (1993). Responses of macaque ganglion-cells and human observers to compound periodic wave-forms. Vision Research 33, 19972011.Google Scholar
Kustov, A.A. & Robinson, D.L. (1996). Shared neural control of attentional shifts and eye movements. Nature 384, 7477.Google Scholar
Laties, A.M. & Zrenner, E. (2002). Viagra(R) (sildenafil citrate) and ophthalmology. Progress in Retinal and Eye Research 21, 485506.Google Scholar
Lee, B.B., Kremers, J. & Yeh, T. (1998). Receptive fields of primate retinal ganglion cells studied with a novel technique. Visual Neuroscience 15, 161175.Google Scholar
Lee, B.B., Martin, P.R. & Valberg, A. (1989). Nonlinear summation of M-cone and L-cone inputs to phasic retinal ganglion-cells of the macaque. Journal of Neuroscience 9, 14331442.Google Scholar
Lee, J. & Stromeyer, C.F. (1989). Contribution of human short-wave cones to luminance and motion detection. Journal of Physiology-London 413, 563593.Google Scholar
Lee, R.J., Mollon, J.D., Zaidi, Q. & Smithson, H.E. (2009). Latency characteristics of the short-wavelength-sensitive cones and their associated pathways. Journal of Vision 9(12):5, 117.Google Scholar
Leh, S.E., Mullen, K.T. & Ptito, A. (2006). Absence of S-cone input in human blindsight following hemispherectomy. European Journal of Neuroscience 24, 29542960.CrossRefGoogle ScholarPubMed
Leh, S.E., Ptito, A., Schonwiesner, M., Chakravarty, M.M. & Mullen, K.T. (2010). Blindsight mediated by an S-cone-independent collicular pathway: An fMRI study in hemispherectomized subjects. Journal of Cognitive Neuroscience 22, 670682.Google Scholar
Lennie, P., Haake, P.W. & Williams, D.R. (1991). The design of chromatically opponent receptive fields. In Computational Models of Visual Processing, ed. Landy, M.S. & Movshon, J.A., pp. 7182. Cambridge, MA: MIT Press.Google Scholar
Lennie, P., Pokorny, J. & Smith, V.C. (1993). Luminance. Journal of the Optical Society of America A – Optics Image Science and Vision 10, 12831293.Google Scholar
Macleod, D.I.A. & Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831186.Google Scholar
Macleod, D.I.A. & He, S. (1993). Visible flicker from invisible patterns. Nature 361, 256258.Google Scholar
Malpeli, J.G. & Schiller, P.H. (1978). Lack of blue Off-center cells in visual-system of monkey. Brain Research 141, 385389.Google Scholar
Marrocco, R.T. & Li, R.H. (1977). Monkey superior colliculus: Properties of single cells and their afferent inputs. Journal of Neurophysiology 40, 844860.CrossRefGoogle ScholarPubMed
Marshak, D. W., & Mills, S. L. (2013). Short-wavelength cone-opponent retinal ganglion cells in mammals. Visual Neuroscience 31, 165175.CrossRefGoogle Scholar
Marshall, J. (1987). The aging retina: Physiology or pathology. Eye-Transactions of the Ophthalmological Societies of the United Kingdom 1, 282295.Google Scholar
Martin, P.R. & Lee, B.B. (2013). Distribution and specificity of S-cone (“blue cone”) signals in subcortical visual pathways. Visual Neuroscience 31, 177187.Google Scholar
McKeefry, D.J., Parry, N.R.A. & Murray, I.J. (2003). Simple reaction times in color space: The influence of chromaticity, contrast, and cone opponency. Investigative Ophthalmology & Visual Science 44, 22672276.Google Scholar
McLellan, J.S. & Eskew, R.T. (2000). ON and OFF S-cone pathways have different long-wave cone inputs. Vision Research 40, 24492465.Google Scholar
McLellan, J.S., Marcos, S., Prieto, P.M. & Burns, S.A. (2002). Imperfect optics may be the eye’s defence against chromatic blur. Nature 417, 174176.Google Scholar
Metha, A.B. & Lennie, P. (2001). Transmission of spatial information in S-cone pathways. Visual Neuroscience 18, 961972.CrossRefGoogle ScholarPubMed
Miyagishima, K.J., Grunert, U., & Li, W. (2013). Processing of S-cone signals in the inner plexiform layer of the mammalian retina. Visual Neuroscience 31, 153163.Google Scholar
Mollon, J.D. (1982 a). Color vision. Annual Review of Psychology 33, 4185.Google Scholar
Mollon, J.D. (1982 b). A taxonomy of tritanopias. Documenta Ophthalmologica Proceedings Series 33, 87101.Google Scholar
Mollon, J.D. (1982 c). What is odd about the short-wavelength mechanism and why is it disproportionately vulnerable to acquired damage? Documenta Ophthalmologica Proceedings Series 33, 145149.Google Scholar
Mollon, J.D. (1989). Tho she kneeld in that place where they grew… The uses and origins of primate color-vision. Journal of Experimental Biology 146, 2138.Google Scholar
Mollon, J.D. & Krauskopf, J. (1973). Reaction-time as a measure of temporal response properties of individual color mechanisms. Vision Research 13, 2740.Google Scholar
Mollon, J.D. & Polden, P.G. (1975). Colour illusion and evidence for interaction between colour mechanisms. Nature 258, 421422.Google Scholar
Moreland, J.D. & Bhatt, P. (1984). Retinal distribution of macular pigment. In Colour Vision Deficiencies VII, ed. Verriest, G., pp. 127132. The Hague: Dr W Junk Publishers.CrossRefGoogle Scholar
Olivier, E., Dorris, M.C. & Munoz, D.P. (1999). Lateral interactions in the superior colliculus, not an extended fixation zone, can account for the remote distracter effect. Behavioral and Brain Sciences 22, 694695.Google Scholar
Organisciak, D.T. & Vaughan, D.K. (2010). Retinal light damage: Mechanisms and protection. Progress in Retinal and Eye Research 29, 113134.Google Scholar
Pokorny, J., Smith, V.C. & Lutze, M. (1987). Aging of the human lens. Applied Optics 26, 14371440.Google Scholar
Pokorny, J., Smithson, H. & Quinlan, J. (2004). Photostimulator allowing independent control of rods and the three cone types. Visual Neuroscience 21, 263267.Google Scholar
Polden, P.G. & Mollon, J.D. (1980). Reversed effect of adapting stimuli on visual sensitivity. Proceedings of the Royal Society B-Biological Sciences 210, 235272.Google Scholar
Posner, M.I. (1980 Feb). Orienting of attention. Quarterly Journal of Experimental Psychology 32, 325.Google Scholar
Pugh, E.N. & Mollon, J.D. (1979). A theory of the pi-1 and pi-3 color mechanisms of Stiles. Vision Research 19, 293312.Google Scholar
Pulos, E., Teller, D.Y. & Buck, S.L. (1980). Infant color-vision - A search for short-wavelength-sensitive mechanisms by means of chromatic adaptation. Vision Research 20, 485493.Google Scholar
Racheva, K. & Vassilev, A. (2008). Sensitivity to stimulus onset and offset in the S-cone pathway. Vision Research 48, 11251136.Google Scholar
Rafal, R., Henik, A. & Smith, J. (1991). Extrageniculate contributions to reflex visual orienting in normal humans: a temporal hemifield advantage. Journal of Cognitive Neuroscience 3, 322328.Google Scholar
Redmond, T., Zlatkova, M.B., Vassilev, A., Garway-Heath, D.F. & Anderson, R.S. (2013). Changes in Ricco’s area with background luminance in the S-cone pathway. Optometry and Vision Science 90, 6674.Google Scholar
Reid, R.C. & Shapley, R.M. (1992). Spatial structure of cone inputs to receptive-fields in primate lateral geniculate-nucleus. Nature 356, 716718.Google Scholar
Reid, R.C. & Shapley, R.M. (2002). Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. Journal of Neuroscience 22, 61586175.Google Scholar
Ripamonti, C., Woo, W.L., Crowther, E. & Stockman, A. (2009). The S-cone contribution to luminance depends on the M- and L-cone adaptation levels: Silent surrounds? Journal of Vision 9(3):10, 116.Google Scholar
Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia 25, 3140.Google Scholar
Sankeralli, M.J. & Mullen, K.T. (1996). Estimation of the L, M-, and S-cone weights of the postreceptoral detection mechanisms. Journal of the Optical Society of America A – Optics Image Science and Vision 13, 906915.CrossRefGoogle Scholar
Schefrin, B.E., Werner, J.S., Plach, M., Utlaut, N. & Switkes, E. (1992). Sites of age-related sensitivity loss in a short-wave cone pathway. Journal of the Optical Society of America A – Optics Image Science 9, 355363.Google Scholar
Schiller, P.H. & Malpeli, J.G. (1977). Properties and tectal projections of monkey retinal ganglion-cells. Journal of Neurophysiology 40, 428445.Google Scholar
Schwartz, S.H. (1996). Spectral sensitivity as revealed by isolated step onsets and step offsets. Ophthalmic and Physiological Optics 16, 5863.Google Scholar
Shinomori, K., Spillmann, L. & Werner, J.S. (1999). S-cone signals to temporal OFF-channels: asymmetrical connections to postreceptoral chromatic mechanisms. Vision Research 39, 3949.Google Scholar
Shinomori, K. & Werner, J.S. (2008). The impulse response of S-cone pathways in detection of increments and decrements. Visual Neuroscience 25, 341347.Google Scholar
Shinomori, K. & Werner, J.S. (2012). Aging of human short-wave cone pathways. Proceedings of the National Academy of Sciences of the United States of America 109, 1342213427.Google Scholar
Smith, V.C., Lee, B.B., Pokorny, J., Martin, P.R. & Valberg, A. (1992). Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights. Journal of Physiology-London 458, 191221.Google Scholar
Smithson, H.E. & Mollon, J.D. (2001). Forward and backward masking with brief chromatic stimuli. Color Research and Application 26, S165S169.Google Scholar
Smithson, H.E. & Mollon, J.D. (2004). Is the S-opponent chromatic sub-system sluggish? Vision Research 44, 29192929.Google Scholar
Smithson, H.E., Sumner, P. & Mollon, J.D. (2003). How to find a tritan line. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 279287. Oxford: Oxford University Press.Google Scholar
Sparks, D.L. (1986). Translation of sensory signals into commands for control of saccadic eye-movements - Role of primate superior colliculus. Physiological Reviews 66, 118171.Google Scholar
Sterling, P. (1973 May). Quantitative mapping with electron-microscope: Retinal terminals in superior colliculus. Brain Research 54, 347354.Google Scholar
Stiles, W.S. (1949). Increment thresholds and the mechanisms of colour vision. Documenta Ophthalmologica 3, 138165.Google Scholar
Stiles, W.S. (1959). Color vision - The approach through increment-threshold sensitivity. Proceedings of the National Academy of Sciences of the United States of America 45, 100114.Google Scholar
Stockman, A. & Brainard, D.H. (2009). Color vision mechanisms. In The Optical Society of America Handbook of Optics, Vol. 3, Vision and Vision Optics (3rd ed.), ed. Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V. & Van Stryland, E., pp. 11.1–11.104. New York: McGraw Hill.Google Scholar
Stockman, A., Langendorfer, M., Smithson, H.E. & Sharpe, L.T. (2006). Human cone light adaptation: From behavioral measurements to molecular mechanisms. Journal of Vision 6, 11941213.Google Scholar
Stockman, A., Macleod, D.I.A. & Depriest, D.D. (1991). The temporal properties of the human short-wave photoreceptors and their associated pathways. Vision Research 31, 189208.Google Scholar
Stockman, A. & Sharpe, L.T. (1999). Cone spectral sensitivities and color matching. In Color vision: From Genes to Perception, ed. Gegenfurtner, K. & Sharpe, L.T., pp. 5387. Cambridge: Cambridge University Press.Google Scholar
Stockman, A. & Sharpe, L.T. (2000 a). The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Research 40, 17111737.Google Scholar
Stockman, A. & Sharpe, L.T. (2000 b). Tritanopic color matches and the middle- and long-wavelength-sensitive cone spectral sensitivities. Vision Research 40, 17391750.Google Scholar
Stockman, A., Sharpe, L.T. & Fach, C. (1999). The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches. Vision Research 39, 29012927.Google Scholar
Stockman, A., Sharpe, L.T., Tufail, A., Kell, P.D., Ripamonti, C. & Jeffery, G. (2007). The effect of sildenafil citrate (Viagra (R)) on visual sensitivity. Journal of Vision 7(8):4, 115.Google Scholar
Stringham, N.T., Sabatinelli, D. & Stringham, J.M. (2013). A potential mechanism for compensation in the blue - yellow visual channel. Frontiers in Human Neuroscience, 7:331, 16.Google Scholar
Stromeyer, C.F., Chaparro, A., Rodriguez, C., Chen, D., Hu, E. & Kronauer, R.E. (1998). Short-wave cone signal in the red-green detection mechanism. Vision Research 38, 813826.Google Scholar
Stromeyer, C.F., Eskew, R.T., Kronauer, R.E. & Spillmann, L. (1991). Temporal phase response of the short-wave cone signal for color and luminance. Vision Research 31, 787803.Google Scholar
Stromeyer, C.F., Kranda, K. & Sternheim, C.E. (1978). Selective chromatic adaptation at different spatial-frequencies. Vision Research 18, 427437.Google Scholar
Sumner, P., Adamjee, T. & Mollon, J.D. (2002). Signals invisible to the collicular and magnocellular pathways can capture visual attention. Current Biology 12, 13121316.Google Scholar
Sumner, P., Nachev, P., Vora, N., Husain, M. & Kennard, C. (2004). Distinct cortical and collicular mechanisms of inhibition of return revealed with S cone stimuli. Current Biology 14, 22592263.Google Scholar
Sun, H., Smithson, H.E., Zaidi, Q. & Lee, B.B. (2006). Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input? Visual Neuroscience 23, 441446.Google Scholar
Tailby, C., Cheong, S.K., Pietersen, A.N., Solomon, S.G. & Martin, P.R. (2012). Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys. Journal of Physiology-London 590, 40614077.Google Scholar
Tailby, C., Solomon, S.G., Dhruv, N.T. & Lennie, P. (2008 a). Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience 28, 11311139.Google Scholar
Tailby, C., Solomon, S.G. & Lennie, P. (2008 b). Functional asymmetries in visual pathways carrying S-cone signals in macaque. Journal of Neuroscience 28, 40784087.Google Scholar
Tansley, B.W. & Boynton, R.M. (1976). A Line, not a space, represents visual distinctness of borders formed by different colors. Science 191, 954957.CrossRefGoogle Scholar
Tansley, B.W. & Boynton, R.M. (1978). Chromatic border perception - role of red-sensitive and green-sensitive cones. Vision Research 18, 683697.Google Scholar
Teller, D.Y., Peeples, D.R. & Sekel, M. (1978). Discrimination of chromatic from white-light by two-month-old human infants. Vision Research 18, 4148.Google Scholar
Terasaki, H., Miyake, Y., Nomura, R., Horiguchi, M., Suzuki, S. & Kondo, M. (1999). Blue-on-yellow perimetry in the complete type of congenital stationary night blindness. Investigative Ophthalmology & Visual Science 40, 27612764.Google Scholar
Valberg, A. (2001). Unique hues: An old problem for a new generation. Vision Research 41, 16451657.Google Scholar
Valberg, A., Lee, B.B. & Tigwell, D.A. (1986). Neurons with strong inhibitory S-cone inputs in the macaque lateral geniculate-nucleus. Vision Research 26, 10611064.Google Scholar
Vassilev, A., Ivanov, I., Zlatkova, M.B. & Anderson, R.S. (2005). Human S-cone vision: Relationship between perceptive field and ganglion cell dendritic field. Journal of Vision 5, 823833.Google Scholar
Vassilev, A., Murzac, A., Zlatkova, M.B. & Anderson, R.S. (2009). On the search for an appropriate metric for reaction time to suprathreshold increments and decrements. Vision Research 49, 524529.Google Scholar
Vassilev, A., Zlatkova, M., Manahilov, V., Krumov, A. & Schaumberger, M. (2000). Spatial summation of blue-on-yellow light increments and decrements in human vision. Vision Research 40, 9891000.Google Scholar
Verdon, W. & Adams, A.J. (1987). Short-wavelength-sensitive cones do not contribute to mesopic luminosity. Journal of the Optical Society of America A – Optics and Image Science 4, 9195.Google Scholar
Verriest, G., Vanlaethem, J. & Uvijls, A. (1982). A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test-scores. American Journal of Ophthalmology 93, 635642.Google Scholar
Volbrecht, V.J. & Werner, J.S. (1987). Isolation of short-wavelength-sensitive cone photoreceptors in 4–6-week-old human infants. Vision Research 27, 469478.Google Scholar
Webster, M.A., Devalois, K.K. & Switkes, E. (1990). Orientation and spatial-frequency discrimination for luminance and chromatic gratings. Journal of the Optical Society of America A – Optics and Image Science 7, 10341049.Google Scholar
Webster, M.A. & Mollon, J.D. (1994). The influence of contrast adaptation on color appearance. Vision Research 34, 19932020.Google Scholar
Weiskrantz, L., Warrington, E.K., Sanders, M.D. & Marshall, J. (1974). Visual capacity in hemianopic field following a restricted occipital ablation. Brain 97, 709728.Google Scholar
Werner, J.S. (1996). Visual problems of the retina during ageing: Compensation mechanisms and colour constancy across the life span. Progress in Retinal and Eye Research 15, 621645.Google Scholar
Werner, J.S., Bieber, M.L. & Schefrin, B.E. (2000). Senescence of foveal and parafoveal cone sensitivities and their relations to macular pigment density. Journal of the Optical Society of America A – Optics Image Science and Vision 17, 19181932.Google Scholar
Williams, C., Azzopardi, P. & Cowey, A. (1995). Nasal and temporal retinal ganglion-cells projecting to the midbrain: Implications for blindsight. Neuroscience 65, 577586.Google Scholar
Williams, D.R., Collier, R.J. & Thompson, B.J. (1983). Spatial resolution of the short-wavelength mechanism. In Colour Vision: Physiology and Psychophysics, ed. Mollon, J.D. & Sharpe, L.T., pp. 487503. London: Academic.Google Scholar
Williams, D.R., Macleod, D.I.A. & Hayhoe, M.M. (1981). Punctate sensitivity of the blue-sensitive mechanism. Vision Research 21, 13571375.Google Scholar
Wisowaty, J.J. & Boynton, R.M. (1980). Temporal-modulation sensitivity of the blue mechanism: Measurements made without chromatic adaptation. Vision Research 20, 895909.Google Scholar
Wyszecki, G. & Stiles, W.S. (1982). Color Science: Concepts and Methods. Quantitative Data and Formulae. New York: Wiley.Google Scholar
Xiao, Y. (2013). Processing of the S-cone signals in the early visual cortex of primates. Visual Neuroscience 31, 189195.Google Scholar
Zaidi, Q. & Halevy, D. (1993). Visual mechanisms that signal the direction of color changes. Vision Research 33, 10371051.Google Scholar
Zele, A.J., Cao, D.C. & Pokorny, J. (2007). Threshold units: A correct metric for reaction time? Vision Research 47, 608611.Google Scholar
Zlatkova, M.B., Vassilev, A. & Anderson, R.S. (2008). Resolution acuity for equiluminant gratings of S-cone positive or negative contrast in human vision. Journal of Vision 8(3):9, 110.Google Scholar
Zrenner, E. & Gouras, P. (1981). Characteristics of the blue sensitive cone mechanism in primate retinal ganglion-cells. Vision Research 21, 16051609.Google Scholar