Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-17T13:53:41.302Z Has data issue: false hasContentIssue false

Split of attentional resources in human visual cortex

Published online by Cambridge University Press:  20 December 2007

CARMEN MORAWETZ
Affiliation:
MR-Research in Neurology & Psychiatry, Medical Faculty, Georg-August University, Goettingen, Germany Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany
PETRA HOLZ
Affiliation:
MR-Research in Neurology & Psychiatry, Medical Faculty, Georg-August University, Goettingen, Germany
JUERGEN BAUDEWIG
Affiliation:
MR-Research in Neurology & Psychiatry, Medical Faculty, Georg-August University, Goettingen, Germany
STEFAN TREUE
Affiliation:
Cognitive Neuroscience Laboratory, German Primate Center, Goettingen, Germany Georg-Elias-Mueller-Institute of Psychology, Georg-August University, Goettingen, Germany
PETER DECHENT
Affiliation:
MR-Research in Neurology & Psychiatry, Medical Faculty, Georg-August University, Goettingen, Germany

Abstract

Visual spatial attention has been described as a process that favors the processing of sensory information that falls into the “spotlight of attention.” Recent studies have provided support for an ability to split this attentional focus to selectively process spatially separate locations. Using functional magnetic resonance imaging, the signature for the presence of multiple spotlights is the presence of multiple retinotopically specific foci of activation in striate and extrastriate visual areas. We used this approach to investigate the presence of such separable activations as a function of the eccentricity of the spatial foci of attention. Visual stimuli consisted of letters and digits displayed in rapid serial visual presentation (RSVP). Five RSVP streams were presented simultaneously, one in the center of the visual field and one in each visual field quadrant. Subjects had to deploy their attention either to a single peripheral location or two non-contiguous regions performing a match-mismatch judgment. The results show that dividing attention leads to multiple spotlights of attention for central as well as more peripheral locations of the visual field. However, depending on the exact location and width of the attentional spotlights, resulting activation maps might reveal merged activation patterns even in the presence of distinct attentional spotlights.

Type
Research Article
Copyright
2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguirre, G.K., Zarahn, E. & D'Esposito, M. (1998). The variability of human BOLD hemodynamic responses. NeuroImage 8, 360369.CrossRefGoogle Scholar
Awh, E. & Pashler, H. (2000). Evidence for split-attentional foci. Journal of Experimental Psychology: Human Perception and Performance 26, 834846.CrossRefGoogle Scholar
Bichot, N.P., Cave, K.R. & Pashler, H. (1999). Visual selection mediated by location: Feature-based selection of noncontiguous locations. Perception & Psychophysics 61, 403423.CrossRefGoogle Scholar
Brefczynski, J.A. & DeYoe, E.A. (1999). A physiological correlate of the ‘spotlight’ of visual attention. Nature Neuroscience 2, 370374.CrossRefGoogle Scholar
Castiello, U. & Umiltà, C. (1992). Splitting focal attention. Journal of Experimental Psychology: Human Perception and Performance 18, 837848.CrossRefGoogle Scholar
Chawla, D., Rees, G. & Friston, K.J. (1999). The physiological basis of attentional modulation in extrastriate visual areas. Nature Neuroscience 2, 671676.CrossRefGoogle Scholar
DeYoe, E.A., Carman, G.J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., Miller, D. & Neitz, J. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America 93, 23822386.CrossRefGoogle Scholar
Driver, J. & Baylis, G.C. (1989). Movement and visual attention: The spotlight metaphor breaks down. Journal of Experimental Psychology: Human Perception and Performance 15, 448456.CrossRefGoogle Scholar
Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General 113, 501517.CrossRefGoogle Scholar
Duncan, J., Ward, R. & Shapiro, K. (1994). Direct measurement of attentional dwell time in human vision. Nature 369, 313315.CrossRefGoogle Scholar
Eimer, M. (2000). An ERP study of sustained spatial attention to stimulus eccentricity. Biological Psychology 52, 205220.CrossRefGoogle Scholar
Eriksen, C.W. & St. James, J.D. (1986). Visual attention within and around the field of focal attention: A zoom lens model. Perception and Psychophysics 40, 225240.CrossRefGoogle Scholar
Eriksen, C.W. & Yeh, Y.Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance 11, 583597.CrossRefGoogle Scholar
Gandhi, S.P., Heeger, D.J. & Boynton, G.M. (1999). Spatial attention affects brain activity in human primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America 96, 33143319.CrossRefGoogle Scholar
Hahn, S. & Kramer, A.F. (1998). Further evidence of the division of attention among non-contiguous locations. Visual Cognition 5, 217256.Google Scholar
Handy, T.C. & Khoe, W. (2005). Attention and sensory gain control: A peripheral visual process? Journal of Cognitive Neuroscience 17, 19361949.Google Scholar
Heinze, H.J., Luck, S.J., Munte, T.F., Goes, A., Mangun, G.R. & Hillyard, S.A. (1994). Attention to adjacent and separate positions in space: An electrophysiological analysis. Perception & Psychophysics 56, 4252.CrossRefGoogle Scholar
Hoffman, J.E. & Nelson, B. (1981). Spatial selectivity in visual search. Perception & Psychophysics 30, 291302.CrossRefGoogle Scholar
Hoffman, J.E., Nelson, B. & Houck, M.R. (1983). The role of attentional resources in automatic detection. Cognitive Psychology 51, 379410.CrossRefGoogle Scholar
Intriligator, J. & Cavanagh, P. (2001). The spatial resolution of visual attention. Cognitive Psychology 43, 171216.CrossRefGoogle Scholar
James, W. (1890/1950). The Principles of Psychology. New York: Dover.
Kastner, S., De Weerd, P., Desimone, R. & Ungerleider, L.G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282, 108111.CrossRefGoogle Scholar
Kastner, S., Pinsk, M.A., Weerd, P.D., Desimone, R. & Ungerleider, L.G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751761.CrossRefGoogle Scholar
Kramer, A.F. & Hahn, S. (1995). Splitting the beam: distribution of attention over non-contiguous regions of the visual field. Psychological Science 6, 381386.CrossRefGoogle Scholar
LaBerge, D. (1983). Spatial extent of attention to letters and words. Journal of Experimental Psychology: Human Perception and Performance 9, 371379.CrossRefGoogle Scholar
Martinez, A., Anllo-Vento, L., Sereno, M.I., Frank, L.R., Buxton, R.B., Dubowitz, D.J., Wong, E.C., Hinrichs, H., Heinze, H.J. & Hillyard, S.A. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience 2, 364369.CrossRefGoogle Scholar
McCormick, P., Klein, R. & Johnston, S. (1998). Splitting versus sharing focal attention: Comment on Castiello and Umiltà (1992). Journal of Experimental Psychology: Human Perception & Performance 24, 350357.CrossRefGoogle Scholar
McGonigle, D.J., Howseman, A.M., Athwal, B.S., Friston, K.J., Franckowiak, R.S. & Holmes, A.P. (2000). Variability in fMRI: an examination of intersession differences. NeuroImage 11, 708734.CrossRefGoogle Scholar
McMains, S.A. & Somers, D.C. (2004). Multiple spotlights of attentional selection in human visual cortex. Neuron 42, 677686.CrossRefGoogle Scholar
McMains, S.A. & Somers, D.C. (2005). Processing efficiency of divided spatial attention mechanisms in human visual cortex. Journal of Neuroscience 25, 94449448.CrossRefGoogle Scholar
Miller, J. (1991). The flanker compatibility effect as a function of visual angle, attentional focus, visual transients, and perceptual load: A search for boundary conditions. Perception & Psychophysics 49, 270288.CrossRefGoogle Scholar
Mueller, M.M., Malinowski, P., Gruber, T. & Hillyard, S.A. (2003a). Sustained division of the attentional spotlight. Nature 424, 309312.Google Scholar
Mueller, N.G., Bartelt, O., Donner, T.H., Villringer, A. & Brandt, S.A. (2003b). A physiological correlate of the “zoom lens” of visual attention. The Journal of Neuroscience 23, 35613565.Google Scholar
Pan, K. & Eriksen, C.W. (1993). Attentional distribution in the visual field during same-different judgements as assessed by response competition. Perception & Psychophysics 53, 134144.CrossRefGoogle Scholar
Peterson, M.S. & Juola, J.F. (2000). Evidence for distinct attentional bottlenecks in attention switching and attentional blink tasks. The Journal of General Psychology 127, 626.CrossRefGoogle Scholar
Posner, M.I., Snyder, C.R.R. & Davidson, B.J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General 109, 160174.CrossRefGoogle Scholar
Reeves, A. & Sperling, G. (1986). Attention gating in short-term visual memory. Psychological Review 93, 180206.CrossRefGoogle Scholar
Schmidt, W., Fisher, B. & Pylyshyn, Z. (1998). Multiple-location access in vision: evidence from illusory line motion. Journal of Experimental Psychology: Human Perception & Performance 24, 505525.CrossRefGoogle Scholar
Sereno, M.I., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W., Brady, T.J., Rosen, B.R. & Tootell, R.B. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889893.CrossRefGoogle Scholar
Shaw, M.L. & Shaw, P. (1977). Optimal allocation of cognitive resources to spatial locations. Journal of Experimental Psychology: Human Perception & Performance 3, 201211.CrossRefGoogle Scholar
Slotnick, S.D., Schwarzbach, J. & Yantis, S. (2003). Attentional inhibition of visual processing in human striate and extrastriate cortex. NeuroImage 19, 16021611.CrossRefGoogle Scholar
Somers, D.C., Dale, A.M., Seiffert, A.E. & Tootell, R.B.H. (1999). Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America 96, 16631668.CrossRefGoogle Scholar
Sperling, G. & Weichselgartner, E. (1995). Episodic theory of the dynamics of spatial attention. Psychological Review 102, 503532.CrossRefGoogle Scholar
Talairach, J. & Tournoux, P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain. New York: Thieme.
Tootell, R.B.H., Dale, A.M., Sereno, M.I. & Malach, R. (1996). New images from human visual cortex. Trends in Neuroscience 19, 481489.CrossRefGoogle Scholar
Tootell, R.B.H., Hadjikhani, N., Hall, K.E., Marrett, S., Vanduffel, W., Vaughan, J.T. & Dale, A.M. (1998). The retinotopy of visual spatial attention. Neuron 21, 14091422.CrossRefGoogle Scholar
Tsal, Y. (1983). Movements of attention across the visual field. Journal of Experimental Psychology: Human Perception & Performance 9, 523530.CrossRefGoogle Scholar
Van Essen, D.C., Newsome, W.T. & Maunsell, J.H. (1984). The visual field representation in striate cortex of the macaque monkey: Assymetries, anisotropies, and individual variability. Vision Research 24, 429448.CrossRefGoogle Scholar
Waldvogel, D., van Gelderen, P., Immisch, I., Pfeiffer, C. & Hallett, M. (2000). The variability of serial fMRI data: Correlation between a visual and a motor task. Neuroreport 11, 38433847.CrossRefGoogle Scholar
Watanabe, T., Sasaki, Y., Miyauchi, S., Putz, B., Fujimaki, N., Nielsen, M.R. & Miyakawa, S. (1998). Attention-regulated activity in human primary visual cortex. Journal of Neurophysiology 79, 22182221.CrossRefGoogle Scholar
Weichselgartner, E. & Sperling, G. (1987). Dynamics of automatic and controlled visual attention. Science 238, 778780.CrossRefGoogle Scholar
Womelsdorf, T., Anton-Erxleben, K., Pieper, F. & Treue, S. (2006). Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nature Neuroscience 9, 11561160.CrossRefGoogle Scholar
Yantis, S. & Johnston, J.C. (1990). On the locus of visual selection: Evidence from focused attention tasks. Journal of Experimental Psychology: Human Perception & Performance 16, 135149.CrossRefGoogle Scholar