Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T10:06:59.851Z Has data issue: false hasContentIssue false

Visual-discrimination deficits after lesions of the centrifugal visual system in pigeons (Columba livia)

Published online by Cambridge University Press:  02 June 2009

Uwe Hahmann
Affiliation:
Allgemeine Psychologie, Universität Konstanz, Konstanz, Germany
Onur Güntürkün
Affiliation:
Allgemeine Psychologie, Universität Konstanz, Konstanz, Germany

Abstract

The effects of bilateral lesions of the centrifugal visual system (CVS) on the visual-discrimination capacity were studied in pigeons. Three different behavioral experiments, each testing different aspects of visual analysis, were performed. In the first two experiments, a grain-grit discrimination task and a visual-acuity determination, stimuli were presented in the frontal binocular visual field. A third experiment investigated the early detection of slow moving objects, introduced into the monocular lateral visual field. After bilateral lesions in the nucleus isthmo-opticus (ION) and in the ectopic nucleus isthmo-opticus (EION), a multiple linear regression analysis was employed to correlate the postoperative performance in all three tasks with the amount of structure loss within ION and EION. Deficits in the grain-grit discrimination procedure were a function of the ION lesion extent and did not depend on EION damage. Thus, these two structures could be functionally differentiated for the first time. Neither the ION nor the EION seems to be involved in visual- acuity performance or the early detection of large shadows moving forward through the visual field. Our data support the hypothesis that the CVS is involved in pecking and food selection among static stimuli at a short viewing distance in ground-feeding birds such as pigeons and chickens.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Catsicas, S. & Clarke, P.G.H. (1987). Abrupt loss of dependence of retinopetal neurons on their target cells, as shown by intraocular injections of kainate in chick embryos. Journal of Comparative Neurology 262, 523534.CrossRefGoogle ScholarPubMed
Catsicas, S., Thanos, S. & Clarke, P.G.H. (1987a). Major role for neuronal death during brain development: Refinement of topographic connections. Proceedings of the National Academy of Sciences of the U.S.A. 84, 81658168.CrossRefGoogle Scholar
Catsicas, S., Catsicas, M. & Clarke, P.G.H. (1987b). Long-distance intrarelinal connections in birds. Nature 326, 186187.CrossRefGoogle ScholarPubMed
Clarke, P.G.H. & Cowan, W.M. (1976). The development of the isthmo-optic tract in the chick, with special reference to the occurrence and correction of developmental errors in the location and connections of isthmo-optic neurons. Journal of Comparative Neurology 167, 143164.CrossRefGoogle Scholar
Crossland, W.J. & Hughes, C.P. (1978). Observations on the afferent and efferent connections of the avian isthmo-optic nucleus. Brain Research 145, 239256.CrossRefGoogle ScholarPubMed
Ehrlich, D., Keyser, K.T. & Karten, H.J. (1987). Distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of chick (Callus gallus). Journal of Comparative Neurology 266, 220233.CrossRefGoogle Scholar
Erichsen, J.T., Hodos, W., Evinger, C., Bessette, B.B. & Phillips, S.J. (1989). Head orientation in pigeons: Postural, locomotor and visual determinants. Brain, Behavior, and Evolution 33, 268278.CrossRefGoogle ScholarPubMed
Floderus, S. (1944). Untersuchungen über den Bau der menschlichen Hypophyse mil besonderer Berücksichtigung der quantitativen mikromorphologischen Verh¨altnisse. Copenhagen: Ejnar Munksgaard.Google Scholar
Fritzsch, B., Crapon, Decaprona M.-D. & Clarke, P.G.H. (1990). Development of two morphological types of retinopetal fibers in chick embryos, as shown by the diffusion along axons of a carbocyanine dye in the fixed retina. Journal of Comparative Neurology 301, 117.Google Scholar
Gellermann, L.W. (1933). Chance orders of alternating stimuli in visual discrimination experiments. Journal of Genetic Psychology 42, 206208.Google Scholar
Gėnsbøl, B. (1986). Greifvögel: alle europäischen Arten, Bestimmungsmerkmale, Flugbilder, Biologie, Verbreitung, Gefährdungsgrad, Bestandsentwicklung (translated by Thiede, W.), München, Wien, Zürich: BLV Verlagsgesellschaft.Google Scholar
Güntürkün, O. (1987). A golgi study of the isthmic nuclei in the pigeon (Columba livia). Cell and Tissue Research 248, 439448.CrossRefGoogle ScholarPubMed
Güntürkün, O. & Kesch, S. (1987). Visual lateralization during feeding in pigeons. Behavioral Neuroscience 101, 433435.CrossRefGoogle ScholarPubMed
Güntürkün, O. & Remy, M. (1990). The topographical projection of the nucleus isthmi pars parvocellularis (Ipc) onto the tectum opticum in the pigeon. Neuroscience Letters 111, 1822.CrossRefGoogle ScholarPubMed
Hayes, B.P., Hodos, W., Holden, A.L. & Low, J.C. (1987). The projection of the visual field upon the retina of the pigeon. Vision Research 27, 3140.CrossRefGoogle ScholarPubMed
Hayes, B.P. & Holden, A.L. (1983). The distribution of centrifugal terminals in the pigeon retina. Experimental Brain Research 49, 189197.Google ScholarPubMed
Hayes, B.P. & Webster, K.E. (1981). Neurons situated outside the isthmo-optic nucleus and projecting to the eye in adult birds. Neuroscience Letters 26, 107112.CrossRefGoogle Scholar
Hodos, W. & Bobko, P. (1984). A weighted index of bilateral brain lesions. Journal of Neuroscience Methods 12, 3743.CrossRefGoogle ScholarPubMed
Hodos, W., Macko, K.A. & Bessette, B.D. (1984). Near field acuity changes after visual system lesions in pigeons. II. Telencephalon. Behavioral Brain Research 13, 1530.CrossRefGoogle ScholarPubMed
Hodos, W. & Karten, H.J. (1974). Visual intensity and pattern discrimination deficits after lesions of the optic lobe in pigeons. Brain, Behavior, and Evolution 9, 165194.CrossRefGoogle ScholarPubMed
Holden, A.L. (1990). Centrifugal pathways to the retina: Which way does the “searchlight” point? Visual Neuroscience 4, 493495.CrossRefGoogle Scholar
Holden, A.L. & Powell, T.P.S. (1972). The functional organization of the isthmo-optic nucleus in the pigeon. Journal of Physiology 233, 419447.CrossRefGoogle Scholar
Jäger, R. (1990). Visuomotor feeding perturbations after lateral telencephalic lesions in pigeons. Behavioral Brain Research 40, 7380.CrossRefGoogle ScholarPubMed
Jarvis, C.D. (1974). Visual discrimination and spatial localization deficits after lesions of the tectufugal pathway in pigeons. Brain, Behavior, and Evolution 9, 195228.CrossRefGoogle ScholarPubMed
Karten, H.J. & Hodos, W. (1967). A stereotaxic atlas of the pigeon (Columba livia). Baltimore, Maryland: The Johns Hopkins Press.Google Scholar
Knipling, R.R. (1978). No deficit in near-field visual acuity of pigeons after transection of the isthmo-optic tract. Brain Research 22, 813816.Google Scholar
Martinoya, C., le Honezec, J. & Bloch, S. (1984). Pigeon's eyes converge during feeding: Evidence for frontal binocular fixation in a lateral-eyed bird. Neuroscience Letters 45, 335339.CrossRefGoogle Scholar
McGill, J.I., Powell, T.P.S. & Cowan, W.M. (1966a). The retinal representation upon the optic tectum and isthmo-optic nucleus in the pigeon. Journal of Anatomy 100, 534.Google ScholarPubMed
McGill, J.I., Powell, T.P.S. & Cowan, W.M. (1966b). The organisation of the projection of the centrifugal fibers to the retina in the pigeon. Journal of Anatomy 100, 3540.Google Scholar
Miles, F.A. (1972a). Centrifugal control of the avian retina. III. Effects of electrical stimulation of the isthmo-optic tract on the receptive field properties of retinal ganglion cells. Brain Research 48, 115129.CrossRefGoogle Scholar
Miles, F.A. (1972b). Centrifugal control of the avian retina. II. Receptive field properties of cells in the isthmo-optic nucleus. Brain Research 48, 93113.CrossRefGoogle ScholarPubMed
Nalbach, H.-O., Wolf-Oberhollenzer, F. & Kirschfeld, K. (1990). The pigeon's eye viewed through an opthalmoscopic microscope: Orientation of retinal landmarks and significance of eye movements. Vision Research 30, 529540.CrossRefGoogle Scholar
O'leary, D.D.M. & Cowan, W.M. (1982). Further studies on the development of the isthmo-optic nucleus with special reference to the occurrence and fate of ectopic and ipsilaterally projecting neurons. Journal of Comparative Neurology 212, 399416.CrossRefGoogle Scholar
Repérant, J., Miceli, D., Vesselkin, N.P. & Molotchnikoff, S. (1989). The centrifugal visual system of vertebrates: A century-old search reviewed. International Review of Cytology 118, 115171.CrossRefGoogle ScholarPubMed
Rogers, J.J. & Miles, F.A. (1972). Centrifugal control of the avian retina. V. Effects of lesions of the isthmo-optic nucleus on visual behaviour. Brain Research 48, 147156.CrossRefGoogle ScholarPubMed
Shortess, G.K. & Klose, E.F. (1977). Effects of lesions involving efferent fibers to the retina in pigeon (Columba livia). Physiology and Behavior 18, 409414.CrossRefGoogle Scholar
Smith, J. (1970). Conditioned supression as a psychophysical technique. In Animal Psychophysics, ed. Stebbins, W.C., pp. 125159. New York: Appleton-Century-Crofts.Google Scholar
Uchiyama, H. (1989). Centrifugal pathways to the retina: Influence of the optic tectum. Visual Neuroscience 3, 183206.CrossRefGoogle Scholar
Weidner, C., Repérant, J., Desroches, A.M., Miceli, D. & Vesselkin, N.P. (1987). Nuclear origin of the centrifugal visual pathway in birds of prey. Brain Research 436, 153160.CrossRefGoogle ScholarPubMed
Wolf-Oberhollenzer, F. (1987). A study of the centrifugal projections to the pigeon retina using two fluorescent markers. Neuroscience Letters 73, 1620.CrossRefGoogle Scholar
Woodson, W., Reiner, A., Anderson, K. & Karten, H.J. (1991). Distribution, laminar location, and morphology of tectal neurons projecting to the isthmo-optic nucleus and the nucleus isthmi, pars parvocellularis in the pigeon (Columba livia) and chick (Callus domesticus): A retrograde labelling study. Journal of Comparative Neurology 305, 470488.CrossRefGoogle Scholar