Skip to main content
×
×
Home

Centrifugal directional bias in the middle temporal visual area (MT) of the macaque

  • Thomas D. Albright (a1)
Abstract

We have examined the distribution of preferred directions of motion for neurons in the middle temporal visual area (MT) of the macaque. We found a marked anisotropy favoring directions that are oriented away from the center of gaze. This anisotropy is present only among neurons with peripherally located receptive fields. This peripheral centrifugal directionality bias corresponds well to the biased distribution of motions characteristic of optic flow fields, which are generated by displacement of the visual world during forward locomotion. The bias may facilitate the processing of this common form of visual stimulation and could underlie previously observed perceptual anisotropies favoring centrifugal motion. We suggest that the bias could arise from exposure of modifiable cortical circuitry to a naturally occurring form of selective visual experience.

Copyright
References
Hide All
Albright, T. D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology 52, 11061130.
Albright, T. D. & Desimone, R. (1987). Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Experimental Brain Research 65, 582592.
Albright, T. D., Desimone, R. & Gross, C. G. (1984). Columnar organization of directionally selective cells in visual area MT of the macaque. Journal of Neurophysiology 51, 1631.
Allman, J. M. & Kass, J. H. (1971). A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Research 31, 85105.
Allman, J. M., Miezin, F. & McGuinness, E. (1985). Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons.. Annual Review of Neuroscience 8, 407430.
Annis, R. C. & Frost, B. (1973). Human visual ecology and orientation anisotropies in acuity. Science 182, 729731.
Baker, J. F., Petersen, S. E., Newsome, W. T. & Allman, J. M. (1981). Visual response properties of neurons in four extrastriate visual areas of the owl monkey {Aotus trivirgatus): a quantitative comparison of the medial (M), dorsomedial (DM), dorsolateral (DL), and middle temporal (MT) areas. Journal of Neurophysiology 45, 387406.
Ball, K. & Sekuler, R. (1980). Human vision favors centrifugal motion. Perception 9, 317325.
Barlow, H. B. (1975). Visual experience and cortical development. Nature (London) 258, 199204.
Barlow, H. B., Blackmore, C. & Pettigrew, J. D. (1967). The neural mechanism of bionocular depth discrimination. Journal of Physiology (London) 198 a, 327342.
Batschelet, E. (1965). Statistical Methods for the Analysis of Problems in Animal Orientation and Certain Biological Rhythms.. American Institute of Biological Sciences: Washington, DC.
Blackmore, C. & Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature 228, 477478.
Blasdel, G. G., Mitchell, D. E., Muir, D. W. & Pettigrew, J. D. (1977). A physiological and behavioral study in cats of the effect of early visual experience with contours of a single orientation.. Journal of Physiology (London) 265, 615636.
Boussaoud, D., Ungerleider, L. G. & Desimone, R. (1987). Cortical pathways for motion analysis: connections of visual areas MST and FST in macaques. Society for Neuroscience Abstracts 13, 1625.
Bruce, C., Desimone, R. & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology 46, 369384.
Clocksin, W. F. (1980). Perception of surface slant and edge labels from optical flow: a computational approach.. Perception 9, 253269.
Cyander, M., Berman, N. & Hein, A. (1975). Cats raised in a onedirectional world: effects on receptive fields in visual cortex andsuperior colliculus. Experimental Brain Research 22, 267280.
Daw, M. W. & Wyatt, H. J. (1976). Kittens reared in a unidirectional environment: evidence for a critical period.. Journal of Physiology (London) 257, 155170.
Dubner, R. & Zeki, S. M. (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Research 35, 528532.
Freeman, R. D., Mitchell, D. E. & Millodot, M. (1972). A neural effect of partial visual deprivation in humans. Science 75, 13841386.
Freeman, R. D. & Freeman, J. D. (1973). Alteration of visual cortex from environmental asymmetries. Nature 246, 359360.
Fuchs, A. F. (1967). Silver staining of myelin by means of physical development. Orvostucomany 20, 433489.
Gattass, R. & Gross, C. G. (1981). Visual topography of the striate projection zone in the posterior superior temporal sulcus (MT) of the macaque. Journal of Neurophysiology 46, 621637.
Georgeson, M. A. & Harris, M. G. (1978). Apparent foveofugal drift of counterphase gratings. Perception 7, 527536.
Gibson, J. J. (1950). The Perception of the Visual World. Boston: Houghton Mifflin.
Helmholtz, H. von (1924). Physiological Optics, Vol. 3. English Translation by Southall, J. P. C. for the Optical Society of America from the 3rd German edition of (1909) Handbuch der Physiologischen Optik. Hamburg: Voss.
Hirsch, H. V. B. & Spinelli, D. N. (1970). Visual experience modified distribution of horizontally and vertically oriented receptive fields in cats. Science 168, 868871.
Hirsch, H. V. B. & Spinelli, D. N. (1971). Modification of the distribution of receptive-field orientation in cats by selective visual exposure during development. Experimental Brain Research 13, 509527.
Hodos, W. & Campbell, C. B. G. (1969). Scala Naturae: Why there is no theory in comparative psychology. Psychological Reviews 76, 337350.
Koenderink, J. J. (1986). Optic flow. Vision Research 26, 161180.
Latour, P. L. (1962). Visual threshold during eye movements. Vision Research 2, 261262.
Lee, D. N. (1980). The optical flow field: the foundation of vision. Philosophical Transactions of the Royal Society B (London) 290, 169179.
Leventhal, A. G. & Schall, J. D. (1983). Structural basis of orientation sensitivity of cat retinal ganglion cells. Journal of Comparative Neurology 220, 465475.
Levick, W. R. & Thibos, L. N. (1982). Analysis of orientation bias in cat retina. Journal of Physiology (London) 329, 243261.
Mardia, K. V. (1972). Statistics of Directional Data. New York: Academic Press.
Maunsell, J. H. R. & Van Essen, D. C. (1983 a). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation.. Journal of Neurophysiology 49, 11271147.
Maunsell, J. H. R. & Van Essen, D. C. (1983 b). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience 3, 25632586.
Maunsell, J. H. R. & Van Essen, D. C. (1987). Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology 266, 535555.
Miezin, F., McGuinness, E. & Allman, J. M. (1982). Antagonistic direction specific mechanisms in area MT in the owl monkey. Society for Neuroscience Abstracts 8, 681.
Mikami, A., Newsome, W. T. & Wurtz, R. H. (1986). Motion selectivity in macaque visual cortex: II. Spatio-temporal range of directional interactions in MT and VI. Journal of Neurophysiology 55, 13281339.
Mitchell, D. E. (1980). The influence of early visual experience on visual perception. InVisual Coding and Adaptability, ed. Harris, C. S.. pp. 150. Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Motter, B. C. & Mountcastle, V. B. (1981). The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization. Journal of Neuroscience 1, 326.
Ranschecker, J. P., von Grünau, M. W. & Poulin, C. (1987). Centrifugal organization of direction preferences in the cat's lateral suprasylvian visual cortex and its relation to flow field processing.. Journal of Neuroscience 7, 943958.
Regan, D. & Beverly, K. L. (1984). Psychophysics of visual flow patterns and motion in depth. In Sensory Experience, Adaptation, and Perception: Festschrift for Ivo Kohler. ed. Spillman, L. & Wooten, B. R., pp. 215240, Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Richards, W. & Steinbach, M. J. (1972). Impaired motion detection preceding smooth eye movements. Vision Research 12, 353356.
Rodman, H. R. & Albright, T. D. (1987). Coding of visual stimulus velocity in area MT of the macaque. Vision Research 27, 20352048.
Schall, J. D., Vitek, D. J. & Leventhal, A. G. (1986). Retinal constraints on orientation specificity in cat visual cortex.. Journal of Neuroscience 6, 823836.
Scott, T. R., Lanvender, A. D., McWhirt, R. A. & Powell, D. A. (1966). Directional asymmetry of motion aftereffect. Journal of Experimental Psychology 71, 806815.
Siegel, R. M., Andersen, R. A., Essick, G. K. & Asanuma, C. (1985). The functional and anatomical subdivision of the inferior parietal lobule. Society for Neuroscience Abstracts 11, 1012.
Stryker, M. P., Sherk, H., Leventhal, A. G. & Hirssch, H. V. B. (1978). Physiological consequences for the cat's visual cortex effectively restricting early visual experience with oriented contours. Journal of Neurophysiology 41, 896909.
Switkes, E., Mayer, M. J. & Sloan, J. A. (1978). Spatial-frequency analysis of the visual environment: anisotropy and the carpentered environment hypothesis. Vision Research 18, 13931399.
Tanaka, K., Hikosaka, H., Satto, H., Yukie, Y., Fukada, Y. & Iwai, E. (1986). Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. Journal of Neuroscience 6, 134144.
Tretter, F., Cyander, M. & Singer, W. (1975). Modification of direction selectivity in neurons in the visual cortex of kittens.. Brain Research 84, 143149.
Ungerleider, L. G. & Desimone, R. (1986). Cortical connections of visual area MT in the macaque. Journal of Comparative Neurology 248, 190222.
Ungerleider, L. G. & Mishkin, M. (1979). The striate projection zone in the superior temporal sulcus of Macaca mulatto: localization and topographic organization. Journal of Comparative Neurology 188, 347366.
Van Essen, D. C. (1985). Functional organization of primate visual cortex. In Cerebral Cortex, Vol. 3, ed. Peters, A. A. & Jones, E. G.. pp. 259329. New York: Plenum Press.
Van Essen, D. C., Maunsell, J. H. R. & Bixby, J. L. (1981). The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties, and topographic connections. Journal of Comparative Neurology 199, 293326.
Van Essen, D. C., Newsome, W. T. & Maunsell, J. H. R. (1984). The visual-field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Research 24, 429448.
Vidyasagar, T. R. & Urbas, J. V. (1982). LGN neurones with and without inputs from visual cortical areas 17 and 18. Experimental Brain Research 46, 157169.
Vital-Durand, F. & Jeannerod, M. (1974). Maturation of the optokinetic response: genetic and environmental factors.. Brain Research 71, 249257.
Wiesel, T. (1982). Postnatal development of the visual cortex and the influence of environment. Nature 299, 583591.
Zeki, S. M. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology (London) 236, 549573.
Zeki, S. M. (1978). Functional organization in the visual cortex of rhesus monkey. Nature (London) 274, 423428.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed