Skip to main content
×
×
Home

The chromatic input to global motion perception

  • ALEXA I. RUPPERTSBERG (a1), SOPHIE M. WUERGER (a1) and MARCO BERTAMINI (a1)
Abstract

For over 30 years there has been a controversy over whether color-defined motion can be perceived by the human visual system. Some results suggest that there is no chromatic motion mechanism at all, whereas others do find evidence for a purely chromatic motion mechanism. Here we examine the chromatic input to global motion processing for a range of color directions in the photopic luminance range. We measure contrast thresholds for global motion identification and simple detection using sparse random-dot kinematograms. The results show a discrepancy between the two chromatic axes: whereas it is possible for observers to perform the global motion task for stimuli modulated along the red–green axis, we could not assess the contrast threshold required for stimuli modulated along the yellowish-violet axis. The contrast required for detection for both axes, however, are well below the contrasts required for global motion identification. We conclude that there is a significant red–green input to global motion processing providing further evidence for the involvement of the parvocellular pathway. The lack of S-cone input to global motion processing suggests that the koniocellular pathway mediates the detection but not the processing of complex motion for our parameter range.

Copyright
Corresponding author
Address correspondence and reprint requests to: Alexa I. Ruppertsberg, Department of Psychology, University of Liverpool, Liverpool, L69 7ZA, UK. E-mail: air@liv.ac.uk
References
Hide All

REFERENCES

Anderson, S.J., Drasdo, N., & Thompson, C.M. (1995). Parvocellular neurons limit motion acuity in human peripheral vision. Proceedings of the Royal Society B (London) 261(1360), 129138.
Anderson, R.S., Zlatkova, M.B., & Demirel, S. (2002). What limits detection and resolution of short-wavelength sinusoidal gratings across the retina? Vision Research 42, 981990.
Baker, C.L., Jr., Boulton, J.C., & Mullen, K.T. (1998). A nonlinear chromatic motion mechanism. Vision Research 38(2), 291302.
Barbur, J. & Saunders, J.E. (1985). Displacement thresholds for motion detection under conditions of chromatic adaptation. Ophthalmic and Physiological Optics 5, 513.
Bilodeau, L. & Faubert, J. (1997). Isoluminance and chromatic motion perception throughout the visual field. Vision Research 37(15), 20732081.
Bilodeau, L. & Faubert, J. (1999). Global motion cues and the chromatic motion system. Journal of the Optical Society of America A 16(1), 15.
Braddick, O.J. (1980). Low-level and high-level processes in apparent motion. Philosophical Transactions of the Royal Society B (London) 290, 137151.
Brainard, D. (1996). Cone contrast and opponent modulation color spaces. In Human Color Vision, ed. Kaiser, P.K. & Boynton, R.M., pp. 563579. Washington, DC: Optical Society of America.
Britten, K.H. (1999). Motion perception: How are moving images segmented? Current Biology 9, R728R730.
Cavanagh, P. & Favreau, O.E. (1985). Colour and luminance share a common motion pathway. Vision Research 25, 15921601.
Cavanagh, P. & Anstis, S. (1991). The contribution of color to motion in normal and color-deficient observers. Vision Research 31, 21092148.
Cavanagh, P., MacLeod, D.I.A., & Anstis, S.M. (1987). Equiluminance: Spatial and temporal factors and the contribution of blue-sensitive cones. Journal of the Optical Society of America, A 4, 14281438.
Croner, L.J. & Albright, T.D. (1997). Image segmentation enhances discrimination of motion in visual noise. Vision Research 37(11), 14151427.
Cropper, S.J. & Derrington, A.M. (1994). Motion of chromatic stimuli: First-order or second-order? Vision Research 34(1), 4958.
Cropper, S.J. & Derrington, A.M. (1996). Rapid colour-specific detection of motion in human vision. Nature 379, 7274.
Curcio, C.A., Allen, K.A., Sloan, K.R., Lerea, C.L., Hurley, J.B., Klock, I.B., & Milam, A.H. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. Journal of Comparative Neurology 312, 610624.
Dacey, D.M. (1993). The mosaic of midget ganglion cells in the human retina. Journal of Neuroscience 13(12), 53345355.
Dacey, D.M. & Lee, B.B. (1994). The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.
Derrington, A.M. & Badcock, D.R. (1985). The low-level motion system has both chromatic and luminance inputs. Vision Research 25, 18691878.
Derrington, A.M. & Henning, G.B. (1993). Detecting and discriminating the direction of motion of luminance and colour gratings. Vision Research 33(5/6), 799811.
Derrington, A.M., Krauskopf, J., & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology 357, 241265.
De Valois, R.L., Cottaris, N.P., Elfar, S.D., Mahon, L.E., & Wilson, J.A. (2000). Some transformations of colour information from lateral geniculate nucleus to striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 97(9), 49975002.
Dougherty, R.F., Press, W.A., & Wandell, B.A. (1999). Perceived speed of colored stimuli. Neuron 24, 893899.
Edwards, M. & Badcock, D.R. (1996). Global-motion perception: Interaction of chromatic and luminance signals. Vision Research 36(16), 24232431.
Eskew, R.T., McLellan, J., & Guilianini, F. (1999). Chromatic detection and discrimination. In Color Vision: From Genes to Perception. ed. Gegenfurtner, K. & Sharpe, L., pp. 345368. Cambridge, UK: Cambridge University Press.
Gegenfurtner, K.R. & Kiper, D. (1992). Contrast detection in luminance and chromatic noise. Journal of the Optical Society of America A 9, 18801888.
Gegenfurtner, K.R. & Hawken, M.J. (1995). Temporal and chromatic properties of motion mechanisms. Vision Research 35(11), 15471563.
Gegenfurtner, K.R. & Hawken, M.J. (1996). Perceived velocity of luminance chromatic and non-Fourier stimuli: Influence of contrast and temporal frequency. Vision Research 36(9), 12811290.
Hawken, M.J., Gegenfurtner, K.R., & Tang, C. (1994). Contrast dependence of colour and luminance motion mechanisms in human vision. Nature 367, 268270.
Judd, D.B. (1951). Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight. CIE Proceedings Vol. 1, part 7, p. 11, Paris, Bureau Central de la CIE.
Kaiser, P.K. & Boyton, R.M. (1996). Human Color Vision. Optical Society of America, Washington, DC.
Kooi, F.L. & De Valois, K.K. (1992). The role of color in the motion system. Vision Research 32, 657668.
Levinson, E. & Sekuler, R. (1975). The independence of channels in human vision selective for direction of motion. Journal of Physiology (London) 250, 347366.
Levitt, H. (1971). Transformed up–down methods in psychoacoustics. Journal of the Acoustical Society of America 49(2), 467477.
Li, H.-C. & Kingdom, F.A.A. (2001). Segregation by color/luminance does not necessarily facilitate motion discrimination in the presence of motion distractors. Perception and Psychophysics 63, 660675.
Lindsey, D.T. & Teller, D.Y. (1990). Motion at isoluminance: Discrimination/detection ratios for moving isoluminant gratings. Vision Research 30(11), 17511761.
Losada, M.A. & Mullen, K.T. (1995). Color and luminance spatial tuning estimated by noise masking in the absence of off-frequency looking. Journal of the Optical Society of America A 12(2), 250260.
Lu, Z.-L. & Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Research 35(19), 26972722.
Lu, Z.-L., Lesmes, L.A., & Sperling, G. (1999). The mechanism of isoluminant chromatic motion. Proceedings of the National Academy of Sciences of the U.S.A. 96, 82898294.
MacLeod, D.I.A. & Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831186.
Metha, A.B. & Mullen, K.T. (1996). Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli. Journal of the Optical Society of America A 13(10), 19691980.
Metha, A.B. & Mullen, K.T. (1997). Red–green and achromatic temporal filters: A ratio model predicts contrast-dependent speed perception. Journal of the Optical Society of America A 14(5), 984997.
Metha, A.B. & Mullen, K.T. (1998). Failure of direction discrimination at detection threshold for both fast and slow chromatic motion. Journal of the Optical Society of America A 15(12), 29452950.
Metha, A.B. & Lennie, P. (2001). Transmission of spatial information in S-cone pathways. Visual Neuroscience 18(6), 961972.
Metha, A.B., Vingrys, A.J., & Badcock, D.R. (1994). Detection and discrimination of moving stimuli: The effects of color, luminance and eccentricity. Journal of the Optical Society of America A 11(6), 16971709.
Moller, P. & Hurlbert, A. (1997a). Interactions between colour and motion in image segmentation. Current Biology 7, 105111.
Moller, P. & Hurlbert, A. (1997b). Motion edges and regions guide image segmentation by colour. Proceedings of the Royal Society B (London) 264, 15711577.
Moutoussis, K. & Zeki, S. (1997). Functional segregation and temporal hierarchy of the visual perceptive systems. Proceedings of the Royal Society B (London) 264, 18.
Mullen, K.T. (1985). The contrast sensitivity of human colour vision to red–green and yellow–blue chromatic gratings. Journal of Physiology 359, 381400.
Mullen, K.T. (1991). Colour vision as a post-receptoral specialization of the central visual field. Vision Research 31, 119130.
Mullen, K.T. & Baker, C.L. (1985). A motion aftereffect from an isoluminant stimulus. Vision Research 25, 685688.
Mullen, K.T. & Boulton, J.C. (1992a). Absence of smooth motion perception in color vision. Vision Research 32, 483488.
Mullen, K.T. & Boulton, J.C. (1992b). Interactions between colour and luminance contrast in the perception of motion. Ophthalmic and Physiological Optics 12, 201205.
Newsome, W.T. & Pare, E.B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience 8(6), 22012211.
Palmer, J., Mobley, L.A., & Teller, D.Y. (1993). Motion at isoluminance: Discrimination/detection ratios and the summation of luminance and chromatic signals. Journal of the Optical Society of America A 10(6), 13531362.
Rabin, J., Adams, A.J., & Switkes, E. (1992). Perceptual ambiguity and the short wavelength sensitive visual pathway. Vision Research 32(2), 399401.
Ramachandran, V.S. (1987). Interaction between colour and motion in human vision. Nature 328, 645647.
Ramachandran, V.S. & Gregory, R.L. (1978). Does colour provide an input to human motion perception? Nature 275, 5556.
Sankeralli, M.J. & Mullen, K.T. (1997). Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space. Journal of the Optic Society of America A 14(10), 26332646.
Seidemann, E., Poirson, A.B., Wandell, B.A., & Newsome, W.T. (1999). Color signals in area MT of the macaque monkey. Neuron 24, 911917.
Snowden, R.J. & Edmunds, R. (1999). Colour and polarity contributions to global motion perception. Vision Research 39(10), 18131822.
Stromeyer, C.F., III, Kronauer, R.E., Ryu, A., Chaparro, A., & Eskew, R.T., Jr. (1995). Contributions of human long-wave and middle-wave cones to motion detection. Journal of Physiology (London) 485, 221243.
Stromeyer, C.F., III, Chaparro, A., Tolias, A.S., & Kronauer, R.E. (1997). Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism. Journal of Physiology 499(Pt 1), 227254.
Swanson, W.H., Pokorny, J., & Smith, V.C. (1987). Effects of temporal frequency on phase-dependent sensitivity to heterochromatic flicker. Journal of the Optical Society of America A 4(12), 22662273.
Tsujimura, S., Shioiri, S., Hirai, Y., & Yaguchi, H. (1999). Selective cone suppression by the L-M- and M-L-cone-opponent mechanisms in the luminance pathway. Journal of the Optical Society of America A 16(6), 12171228.
Tsujimura, S., Shioiri, S., Hirai, Y., & Yaguchi, H. (2000). Technique to investigate the temporal phase shift between L- and M-cone inputs to the luminance mechanism. Journal of the Optical Society of America A 17(5), 846857.
Walsh, J.W.T. (1958). Photometry (3rd edition ed.). London, UK: Constable & Co. Ltd.
Wandell, B.A., Poirson, A.B., Newsome, W.T., Baseler, H.A., Boynton, G.M., Huk, A., Gandhi, S., & Sharpe, L.T. (1999). Color signals in human motion-selective cortex. Neuron 24, 900909.
Watson, A.B., Thompson, P.G., Murphy, B.J., & Nachmias, J. (1980). Summation and discrimination of gratings moving in opposite directions. Vision Research 20, 341347.
Willis, A. & Anderson, S.J. (1998). Separate colour-opponent mechanisms underlie the detection and discrimination of moving chromatic targets. Proceedings of the Royal Society B (London) 265, 24352441.
Willis, A. & Anderson, S.J. (2002). Colour and luminance interactions in the visual perception of motion. Proceedings of the Royal Society B (London) 269(1495), 10111016.
Wuerger, S.M. & Landy, M.S. (1993). Role of chromatic and luminance contrast in inferring structure from motion. Journal of the Optical Society of America A 10(6), 13631372.
Wuerger, S.M., Watson, A.B., & Ahumada, A. (2002). Towards a spatio-chromatic standard observer for detection. Proceedings of the SPIE: Human Vision and Electronic Imaging VII 4662, 159172.
Wyszecki, G. & Stiles, W.S. (2000). Color Science: Concepts and Methods, Quantitative Data and Formulae (2nd edition). New York: John Wiley & Sons.
Yoshizawa, T., Mullen, K.T., & Baker, C.L., Jr. (2000). Absence of a chromatic linear motion mechanism in human vision. Vision Research 40(15), 19932010.
Zaidi, Q. & DeBonet, J.S. (2000). Motion energy versus position tracking: Spatial, temporal, and chromatic parameters. Vision Research 40(26), 36133635.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed