Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T13:34:20.650Z Has data issue: false hasContentIssue false

Classification and diversity of amblyopia

Published online by Cambridge University Press:  16 April 2018

DAPHNE MAURER*
Affiliation:
Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, Ontario, Canada
SUZANNE P. McKEE
Affiliation:
Smith-Kettlewell Eye Research Institute, San Francisco, California
*
*Address correspondence to: Dr. Daphne Maurer, Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON L8S 4K1 Canada. E-mail: mcmaster@maurer.ca

Abstract

Amblyopia is a developmental disorder that affects the spatial vision of one or both eyes in the absence of an obvious organic cause; it is associated with a history of abnormal visual experience during childhood. Subtypes have been defined based on the purported etiology, namely, strabismus (misaligned eyes) and/or anisometropia (unequal refractive error). Here we consider the usefulness of these subclassifications.

Type
Perspective
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attebo, K., Mitchell, P., Cumming, R., Smith, W., Jolly, N. & Sparkes, R. (1998). Prevalence and causes of amblyopia in an adult population. Ophthalmology 105, 154159.CrossRefGoogle Scholar
Babinsky, E. & Candy, T.R. (2013). Why do only some hyperopes become strabismic? Investigative Ophthalmology & Visual Science 54, 49414955.Google Scholar
Barrett, B.T., Bradley, A. & Candy, T.R. (2013). The relationship between anisometropia and amblyopia. Progress in Retinal and Eye Research 36, 120158.CrossRefGoogle ScholarPubMed
Birch, E.E. (2013). Amblyopia and binocular vision. Progress in Retinal and Eye Research 54, 19982003.Google Scholar
Bosworth, R.G. & Birch, E.E. (2003). Binocular function and optotype-grating acuity discrepancies in amblyopic children. Investigative Ophthalmology & Visual Science 44, e3183.Google Scholar
Brosnahan, D., Norcia, A.M., Schor, C.M. & Taylor, D.G. (1998). OKN, perceptual and VEP direction biases in strabismus. Vision Research 38, 28332840.Google Scholar
Chung, S.T.L., Kumar, G., Li, R.W. & Levi, D.M. (2015). Characteristics of fixational eye movements in amblyopia: Limitations on fixation stability and acuity? Vision Research 114, 8799.Google Scholar
Cuiffreda, K.J., Kenyon, R.V. & Stark, L. (1979). Fixational eye movements in amblyopia and strabismus. Journal of the American Optometric Association 50, 12511258.Google Scholar
Farzin, F. & Norcia, A.M. (2011). Impaired visual decision-making in individuals with amblyopia. Journal of Vision 14, 110.Google Scholar
Friedman, D.S., Repka, M.X., Katz, J., Giordano, L., Ibironke, J., Hawse, P. & Tielsch, J.M. (2009). Prevalence of amblyopia and strabismus in white and African American children aged 6 through 71 months the baltimore pediatric eye disease study. Ophthalmology 116, 21282134.Google Scholar
Gonzalez, E.G., Wong, A.M.F., Niechwiej-Szwedo, E., Tarita-Nistor, L. & Steinbach, M.J. (2012). Eye position stability in amblyopia and in normal binocular vision. Investigative Ophthalmology & Visual Science 53, 53865394.Google Scholar
Gramatikov, B.I., Zalloum, O.H., Wu, Y.K., Hunter, D.G. & Guyton, D.L. (2007). Directional eye fixation sensor using birefringence-based foveal detection. Applied Optics 46, 18091818.Google Scholar
Gunton, K.B. (2013). Advances in amblyopia: What have we learned from PEDIG trials? Pediatrics 131, 540547.Google Scholar
Hess, R.F. & Pointer, J.S. (1985). Differences in the neural basis of human amblyopia: The distribution of the anomaly across the visual field. Vision Research 25, 15771594.Google Scholar
Hess, R.F., Thompson, B., Black, J.M., Machara, G., Zhang, P., Bobier, W.R. & Cooperstock, J. (2012). An ipod treatment of amblyopia: An updated binocular approach. Journal of Optometry 83, 8794.Google Scholar
Ho, C.S. & Giaschi, D.E. (2006). Deficient maximum motion displacement in amblyopia. Vision Research 46, 45954603.Google Scholar
Huang, C.B., Zhou, J., Lu, Z.L. & Zhou, Y. (2011). Deficient binocular combination reveals mechanisms of anisometropic amblyopia: signal attenuation and interocular inhibition. Journal of Vision. 4. doi:10.1167/11.6.4Google Scholar
Hunter, D.G., Patel, S.N. & Guyton, D.L. (1999). Automated detection of foveal fixation by use of retinal birefringence scanning. Applied Optics 38, 12731279.Google Scholar
Lesmes, L.A., Lu, Z.L., Baek, J. & Albright, T. (2010). Bayesian adaptive estimation of the contrast sensitivity function: The quick CSF method. Journal of Vision, 17. doi:10.1167/10.3.17Google ScholarPubMed
Levi, D.M. & Klein, S. (1982a). Hyperacuity and amblyopia. Nature 298, 268270.Google Scholar
Levi, D.M. & Klein, S. (1982b). Differences in vernier discrimination for grating between strabismic and anisometropic amblyopes. Investigative Ophthalmology & Visual Science 23, 398407.Google Scholar
Levi, D.M. & Klein, S.A. (1985). Vernier acuity, crowding and amblyopia. Vision Research 25, 979991.Google Scholar
Li, R.W., Ngo, C., Nguyen, J. & Levi, D.M. (2011). Video-game play induces plasticity in the visual system of adults with amblyopia. PLoS Biology 9, e1001135.Google Scholar
McKee, S.P. (1998). Binocular functioning and visual acuity in amblyopia. In Vision Screening in the Preschool Child, pp. 206228. Bethesda, MD: Health Resources and Services Administration, HHS.Google Scholar
McKee, S.P., Levi, D.M. & Movshon, J.A. (2003). The pattern of visual deficits in amblyopia. Journal of Vision 3, 380405.CrossRefGoogle ScholarPubMed
McKee, S.P., Levi, D.M., Schor, C.M. & Movshon, J.A. (2016). Saccadic latency in amblyopia. Journal of Vision 16, 3.CrossRefGoogle ScholarPubMed
Multi-Ethnic Pediatric Eye Disease Study Group (2008). Prevalence of amblyopia and strabismus in African American and Hispanic children ages 6 to 72 months. Ophthalmology 115, 12291236.Google Scholar
Niechwiej-Szwedo, D., Goltz, H.C., Chandrakumar, M., Hirji, Z.A. & Wong, A.M.F. (2010). Effects of anisometropic amblyopia on visuomotor behavior, I: Saccadic eye movements. Investigative Ophthalmology & Visual Science 51, 63486354.Google Scholar
Niechwiej-Szwedo, D., Chandrakumar, M., Goltz, H.C. & Wong, A.M.F. (2012). Effects of strabismic amblyopia and strabismus without amblyopia on visuomotor behavior I: Saccadic eye movements. Investigative Ophthalmology & Visual Science 53, 74587468.Google Scholar
Popple, A.V. & Levi, D.M. (2008). The attentional blink in amblyopia. Journal of Vision 8, 19.Google Scholar
Repka, M.X., Beck, R.W., Holmes, J.M., Birch, E.E., Chandler, D.L., Cotter, S.A. et al., Pediatric Eye Disease Investigator Group (2003). A randomized trial of patching regimens for treatment of moderate amblyopia in children. Archives of Ophthalmology 121, 603611.Google Scholar
Robaei, D., Rose, K., Ojaimi, E., Kifley, A., Huynh, S. & Mitchell, P. (2005). Visual acuity and the causes of visual loss in a population-based sample of 6-year-old Australian children. Ophthalmology, 112, 12751282.Google Scholar
Schor, C.M., Fusaro, R.E., Wilson, N. & McKee, S.P. (1997). Prediction of early-onset esotropia from components of the infantile squint syndrome. Investigative Ophthalmology & Visual Science 38, 719740.Google Scholar
Schor, C.M. & Hallmark, W. (1978). Slow control of eye position in strabismic amblyopia. Investigative Ophthalmology & Visual Science 17, 577581.Google Scholar
Shadlen, M. & Carney, T. (1986). Mechanisms of human motion perception revealed by a new cyclopean illusion. Science 232, 9597.Google Scholar
Sharma, V., Levi, D.M. & Klein, S.A. (2000). Undercounting features and missing features: Evidence for a high level deficit in strabismic amblyopia. Nature Neuroscience 3, 496501.Google Scholar
Simmers, A.J., Ledgeway, T., Hess, R.F. & McGraw, P.V. (2003). Deficits to global motion processing in human amblyopia. Vision Research 43, 729738.Google Scholar
Sloper, J. (2016). Knapp lecture: The other side of amblyopia. Journal of AAPOS 20, 113.Google Scholar
Thompson, B., Richard, A., Churan, J., Hess, R.F., Aaen-Stockdale, C. & Pack, C.C. (2011). Impaired spatial and binocular summation for motion direction discrimination in strabismic amblyopia. Vision Research 51, 577584.CrossRefGoogle ScholarPubMed
The Pediatric Eye Disease Investigator Group (2003a). The course of moderate amblyopia treated with patching in children: Experience of the amblyopia treatment study. American Journal of Ophthalmology 136, 620629.Google Scholar
The Pediatric Eye Disease Investigator Group (2003b). The course of moderate amblyopia treated with atropine in children: Experience of the amblyopia treatment study. American Journal of Ophthalmology 136, 630639.Google Scholar
The Pediatric Eye Disease Investigator Group (2003c). A randomized trial of prescribed patching regimens for treatment of severe amblyopia in children. Ophthalmology 110, 20752087.CrossRefGoogle Scholar
The Pediatric Eye Disease Investigator Group (2003d). A randomized trial of patching regimens for treatment of moderate amblyopia in children. Archives of Ophthalmology 121, 603611.Google Scholar
Webber, A.L. & Wood, J. (2005). amblyopia: Prevalence, natural history, functional effects and treatment. Clinical and Experimental Optometry 88, 365375.Google Scholar
Ying, G.S., Maguire, M.G., Cyert, L.A., Ciner, E., Quinn, G.E., Kulp, M.T., Orel-Bixler, D. & Moore, B. (2014). Prevalence of vision disorders by racial and ethnic group among children participating in head start. Ophthalmology 121, 630636.Google Scholar
Zhang, B., Stevenson, S.S., Cheng, H., Laron, M., Kumar, G., Tong, J. & Chino, Y.M. (2008). Effects of fixation instability on multifocal VEP (mfVEP) responses in amblyopes. Journal of Vision 8, 16.Google Scholar
Zhou, Y., Huang, C., Xu, P., Tao, L., Qiu, Z. & Li, X., Lu, Z.L. (2006). Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vision Research 46, 739750.Google Scholar