Skip to main content
×
Home
    • Aa
    • Aa

Color constancy in natural scenes with and without an explicit illuminant cue

  • KINJIRO AMANO (a1), DAVID H. FOSTER (a1) and SÉRGIO M.C. NASCIMENTO (a2)
Abstract

Observers can generally make reliable judgments of surface color in natural scenes despite changes in an illuminant that is out of view. This ability has sometimes been attributed to observers' estimating the spectral properties of the illuminant in order to compensate for its effects. To test this hypothesis, two surface-color-matching experiments were performed with images of natural scenes obtained from high-resolution hyperspectral images. In the first experiment, the sky illuminating the scene was directly visible to the observer, and its color was manipulated. In the second experiment, a large gray sphere was introduced into the scene so that its illumination by the sun and sky was also directly visible to the observer, and the color of that illumination was manipulated. Although the degree of color constancy varied across this and other variations of the images, there was no reliable effect of illuminant color. Even when the sky was eliminated from view, color constancy did not worsen. Judging surface color in natural scenes seems to be independent of an explicit illuminant cue.

Copyright
Corresponding author
Address correspondence and reprint requests to: Kinjiro Amano, Sensing, Imaging, and Signal Processing Group, School of Electrical and Electronic Engineering, University of Manchester, Manchester M60 1QD, UK. E-mail: k.amano@manchester.ac.uk
References
Hide All

REFERENCES

Amano, K. & Foster, D.H. (2004). Colour constancy under simultaneous changes in surface position and illuminant. Proceedings of the Royal Society of London Series B 271, 23192326.
Amano, K., Foster, D.H., & Nascimento, S.M. (2005). Minimalist surface-colour matching. Perception 34, 10091013.
Arend, L. & Reeves, A. (1986). Simultaneous color constancy. Journal of the Optical Society of America A. Optics, Image Science, and Vision 3, 17431751.
Arend, L.E., Jr., Reeves, A., Schirillo, J., & Goldstein, R. (1991). Simultaneous color constancy: Papers with diverse Munsell values. Journal of the Optical Society of America A. Optics, Image Science, and Vision 8, 661672.
Bramwell, D.I. & Hurlbert, A.C. (1996). Measurements of colour constancy by using a forced-choice matching technique. Perception 25, 229241.
Buchsbaum, G. (1980). A spatial processor model for object colour perception. Journal of the Franklin Institute 310, 126.
Cleveland, W.S. & Devlin, S.J. (1988). Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association 83, 596610.
Craven, B.J. & Foster, D.H. (1992). An operational approach to colour constancy. Vision Research 32, 13591366.
de Almeida, V.M.N., Fiadeiro, P.T., & Nascimento, S.M.C. (2004). Color constancy by asymmetric color matching with real objects in three-dimensional scenes. Visual Neuroscience 21, 341345.
D'Zmura, M. & Iverson, G. (1993a). Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces. Journal of the Optical Society of America A. Optics, Image Science, and Vision 10, 21482165.
D'Zmura, M. & Iverson, G. (1993b). Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces. Journal of the Optical Society of America A. Optics, Image Science, and Vision 10, 21662180.
D'Zmura, M. & Iverson, G. (1994). Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces. Journal of the Optical Society of America A. Optics, Image Science, and Vision 11, 23892400.
Efron, B. & Tibshirani, R.J. (1993). An Introduction to the Bootstrap. New York: Chapman and Hall.
Finlayson, G.D., Hordley, S.D., & Hubel, P.M. (2001). Color by correlation: A simple, unifying framework for color constancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 12091221.
Foster, D.H. (2003). Does colour constancy exist? Trends in Cognitive Sciences 7, 439443.
Foster, D.H., Amano, K., & Nascimento, S.M. (2006a). Color constancy in natural scenes explained by global image statistics. Visual Neuroscience, 23, 341349.
Foster, D.H., Amano, K., & Nascimento, S.M.C. (2001a). Colour constancy from temporal cues: Better matches with less variability under fast illuminant changes. Vision Research 41, 285293.
Foster, D.H., Amano, K., Nascimento, S.M.C., & Foster, M.J. (2006b). Frequency of metamerism in natural scenes. Journal of the Optical Society of America A. Optics, Image Science, and Vision (in press).
Foster, D.H. & Nascimento, S.M.C. (1994). Relational colour constancy from invariant cone-excitation ratios. Proceedings of the Royal Society of London Series B 257, 115121.
Foster, D.H., Nascimento, S.M.C., & Amano, K. (2004). Information limits on neural identification of colored surfaces in natural scenes. Visual Neuroscience 21, 331336.
Foster, D.H., Nascimento, S.M.C., Amano, K., Arend, L., Linnell, K.J., Nieves, J.L., Plet, S., & Foster, J.S. (2001b). Parallel detection of violations of color constancy. Proceedings of the National Academy of Sciences of the U.S.A. 98, 81518156.
Golz, J. & MacLeod, D.I.A. (2002). Influence of scene statistics on colour constancy. Nature 415, 637640.
Judd, D.B., MacAdam, D.L., & Wyszecki, G. (1964). Spectral distribution of typical daylight as a function of correlated color temperature. Journal of the Optical Society of America 54, 10311040.
Kraft, J.M. & Brainard, D.H. (1999). Mechanisms of color constancy under nearly natural viewing. Proceedings of the National Academy of Sciences of the U.S.A. 96, 307312.
Land, E.H. & McCann, J.J. (1971). Lightness and retinex theory. Journal of the Optical Society of America 61, 111.
Linnell, K.J. & Foster, D.H. (1997). Space-average scene colour used to extract illuminant information. In John Dalton's Colour Vision Legacy, eds. Dickinson, C., Murray, I. & Carden, D., pp. 501509. London: Taylor and Francis.
Linnell, K.J. & Foster, D.H. (2002). Scene articulation: Dependence of illuminant estimates on number of surfaces. Perception 31, 151159.
Maloney, L.T. (1999). Physics-based approaches to modeling surface color perception. In Color Vision: From Genes to Perception, eds. Gegenfurtner, K.R. & Sharpe, L.T., pp. 387416. Cambridge: Cambridge University Press.
Nascimento, S.M.C., Ferreira, F.P., & Foster, D.H. (2002). Statistics of spatial cone-excitation ratios in natural scenes. Journal of the Optical Society of America A 19, 14841490.
Smithson, H.E. (2005). Sensory, computational and cognitive components of human colour constancy. Philosophical Transactions of the Royal Society B 360, 13291346.
von Helmholtz, H. (1867). Handbuch der Physiologischen Optik, Vol. 2. Second edition. Leipzig: Leopold Voss. Translated as Helmholtz's Treatise on Physiological Optics, ed. Southall, J.P.C., pp. 286–287. Third edition. Washington, DC: Optical Society of America, 1924. Reprint, New York: Dover Publications, 1962.
Yang, J.N. & Maloney, L.T. (2001). Illuminant cues in surface color perception: Tests of three candidate cues. Vision Research 41, 25812600.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 146 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.