Skip to main content Accessibility help
×
Home

A common contrast pooling rule for suppression within and between the eyes

  • TIM S. MEESE (a1), KIRSTEN L. CHALLINOR (a1) and ROBERT J. SUMMERS (a1)

Abstract

Recent work has revealed multiple pathways for cross-orientation suppression in cat and human vision. In particular, ipsiocular and interocular pathways appear to assert their influence before binocular summation in human but have different (1) spatial tuning, (2) temporal dependencies, and (3) adaptation after-effects. Here we use mask components that fall outside the excitatory passband of the detecting mechanism to investigate the rules for pooling multiple mask components within these pathways. We measured psychophysical contrast masking functions for vertical 1 cycle/deg sine-wave gratings in the presence of left or right oblique (±45 deg) 3 cycles/deg mask gratings with contrast C%, or a plaid made from their sum, where each component (i) had contrast 0.5Ci%. Masks and targets were presented to two eyes (binocular), one eye (monoptic), or different eyes (dichoptic). Binocular-masking functions superimposed when plotted against C, but in the monoptic and dichoptic conditions, the grating produced slightly more suppression than the plaid when Ci ≥ 16%. We tested contrast gain control models involving two types of contrast combination on the denominator: (1) spatial pooling of the mask after a local nonlinearity (to calculate either root mean square contrast or energy) and (2) “linear suppression” (Holmes & Meese, 2004, Journal of Vision4, 1080–1089), involving the linear sum of the mask component contrasts. Monoptic and dichoptic masking were typically better fit by the spatial pooling models, but binocular masking was not: it demanded strict linear summation of the Michelson contrast across mask orientation. Another scheme, in which suppressive pooling followed compressive contrast responses to the mask components (e.g., oriented cortical cells), was ruled out by all of our data. We conclude that the different processes that underlie monoptic and dichoptic masking use the same type of contrast pooling within their respective suppressive fields, but the effects do not sum to predict the binocular case.

Copyright

Corresponding author

*Address correspondence and reprint requests to: Tim S. Meese, School of Life and Health Sciences, Aston University, Birmingham B47ET, UK. E-mail: t.s.meese@aston.ac.uk

References

Hide All
Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2, 284299.
Albrecht, D.G. & Geisler, W.S. (1991). Motion selectivity and the contrast-response function of simple cells in the visual cortex. Visual Neuroscience 7, 531546.
Baker, D.H. & Meese, T.S. (2007). Binocular contrast interactions: Dichoptic masking is not a single process. Vision Research 47, 30963107.
Baker, D.H., Meese, T.S. & Georgeson, M.A. (2007 a). Binocular interaction: Contrast matching and contrast discrimination are predicted by the same model. Spatial Vision 20, 397413.
Baker, D.H., Meese, T.S. & Summers, R.J. (2007 b). Psychophysical evidence for two routes to suppression before binocular summation of signals in human vision. Neuroscience 146, 435448.
Bird, C.M., Henning, G.B. & Wichmann, F.A. (2002). Contrast discrimination with sinusoidal gratings of different spatial frequency. Journal of the Optical Society of America A 19, 12671273.
Bonds, A.B. (1989). Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Visual Neuroscience 2, 4155.
Bonin, V., Mante, V. & Carandini, M. (2005). The suppressive field of neurons in lateral geniculate nucleus. Journal of Neuroscience 25, 1084410856.
Bonin, V., Mante, V. & Carandini, M. (2006). The statistical computation underlying contrast gain control. Journal of Neuroscience 26, 63466353.
Büchert, M., Greenlee, M.W., Rutschmann, R.M., Kraemer, F.M., Luo, F. & Hennig, J. (2002). Functional magnetic resonance imaging evidence for binocular interactions in human visual cortex. Experimental Brain Research 145, 334339.
Burton, G.J. (1981). Contrast discrimination by the human visual system. Biol Cybern 40, 2738.
Challinor, K.L., Meese, T.S. & Holmes, D.J. (2008). A two-stage process for masking: Linear suppression is more broadly tuned than super-suppression. Perception 37, 313.
Challinor, K.L., Meese, T.S. & Summers, R.J. (2007). Surround suppression saturates, cross-orientation suppression does not. Perception 36, suppl. 38. (ECVP Abstract).
Chen, C.-C. & Tyler, C.W. (2001). Lateral sensitivity modulation explains the flanker effect in contrast DISCRIMINATION. Proceedings of the Royal Society B 268, 509516.
Chirimuuta, M. & Tolhurst, D.J. (2005). Does a Bayesian model of V1 contrast coding offer a neurophysiological account of human contrast discrimination? Vision Research 45, 29432959.
Clatworthy, P.L., Chirimuuta, M., Lauritzen, J.S. & Tolhurst, D.J. (2001). Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1). Vision Research 43, 19832001.
Derrington, A.M. & Henning, G.B. (1989). Some observations on the masking effects of two-dimensional stimuli. Vision Research 29, 241246.
Derrington, A.M. & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology 357, 219240.
Ding, J. & Sperling, G. (2006). A gain-control theory of binocular combination. Proceedings of the National Academy of Sciences of the United States of America 103, 11411146.
Durand, S., Freeman, T.C.B. & Carandini, M. (2007). Temporal properties of surround suppression in cat primary visual cortex. Visual Neuroscience 24, 679690.
Felisberti, F. & Derrington, A.M. (1999). Long-range interactions modulate the contrast gain in the lateral geniculate nucleus of cats. Visual Neuroscience 16, 943956.
Felisberti, F. & Derrington, A.M. (2001). Long-range interactions in the lateral geniculate nucleus of the New-World monkey, Callithrix jacchus. Visual Neuroscience 18, 209218.
Foley, J.M. (1994). Human luminance pattern-vision mechanisms: Masking experiments require a new model. Journal of the Optical Society of America A 11, 17101719.
Foley, J.M. & Legge, G.E. (1981). Contrast detection and near-threshold discrimination in human-vision. Vision Research 21, 10411053.
Freeman, T.C.B., Durand, S., Kiper, D.C. & Carandini, M. (2002). Suppression without inhibition in visual cortex. Neuron 35, 759771.
García-Pérez, M.A. & Alcalá-Quintana, R. (2007). The transducer model for contrast detection and discrimination: Formal relations, implications, and an empirical test. Spatial Vision 20, 543.
Georgeson, M.A. & Meese, T.S. (2006). Fixed or variable noise in contrast discrimination? The jury's still out… Vision Research 46, 42944303.
Georgeson, M.A. & Meese, T.S. (2007). Binocular combination at threshold: Temporal filtering and summation of signals in separate ON and OFF channels. Perception 36 suppl. 60. (ECVP).
Georgeson, M.A. & Scott-Samuel, N.E. (1999). Motion contrast: A new metric for direction discrimination. Vision Research 39, 43934402.
Graham, N. & Sutter, A. (1998). Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels. Vision Research 38, 231257.
Graham, N. & Sutter, A. (2000). Normalization: Contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision. Vision Research 40, 27372761.
Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience 9, 181197.
Hirsch, J.A., Martinez, L.M., Pillai, C., Alonso, J.M., Wang, Q. & Sommer, F.T. (2003). Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nature Neuroscience 6, 13001308.
Holmes, D.J. & Meese, T.S. (2004). Grating and plaid masks indicate linear summation in a contrast gain pool. Journal of Vision 4, 10801089.
Itti, L., Koch, C. & Braun, J. (2000). Revisiting spatial vision: Toward a unifying model. Journal of the Optical Society of America A 17, 18991917.
Katkov, M., Tsodyks, M. & Sagi, D. (2006). Singularities in the inverse modelling of 2AFC contrast discrimination data. Vision Research 46, 259266.
Katkov, M., Tsodyks, M. & Sagi, D. (2007). Inverse modelling of human contrast response. Vision Research 47, 28552867.
Klein, S.A. (2006). Separating transducer non-linearities and multiplicative noise in contrast discrimination. Vision Research 46, 42794293.
Kontsevich, L.L., Chen, C.-C. & Tyler, C.W. (2002). Separating the effects of response nonlinearity and internal noise psychophysical. Vision Research 42, 17711784.
Kontsevich, L.L. & Tyler, C.W. (1999) Nonlinearities of near-threshold contrast transduction. Vision Research 39, 18691880.
Legge, G. & Foley, J. (1980). Contrast masking in human vision. Journal of the Optical Society of America A 70, 14581471.
Li, B., Peterson, M.R., Thompson, J.K., Duong, T. & Freeman, R.D. (2005). Cross-orientation suppression: Monoptic and dichoptic mechanisms are different. Journal of Neurophysiology 94, 16451650.
Li, B., Thompson, J.K., Duong, T., Peterson, M.R. & Freeman, R.D. (2006). Origins of cross-orientation suppression in the visual cortex. Journal of Neurophysiology 96, 17551764.
Lu, Z.L. & Dosher, B.A. (1999). Characterizing human perceptual inefficiencies with equivalent internal noise. Journal of the Optical Society of America A 16, 764778.
McIlhagga, W. & Peterson, R. (2006). Sinusoid = light bar plus dark bar? Vision Research 46, 19341945.
McKee, S.P., Klein, S.A. & Teller, D.Y. (1985). Statistical properties of forced-choice psychometric functions—Implications of probit analysis. Perception & Psychophysics 37, 286298.
Macknik, S.L. & Martinez-Conde, S. (2004) Dichoptic visual masking reveals that early binocular neurons exhibit weak interocular suppression: Implications for binocular vision and visual awareness. Journal of Cognitive Neuroscience 16, 10491059.
Maehara, G. & Goryo, K. (2005). Binocular, monocular and dichoptic pattern masking. Optical Review 12, 7682.
Manahilov, V., Simpson, W.A. & McCulloch, D.L. (2001). Spatial summation of peripheral Gabor patches. Journal of the Optical Society of America A 18, 273282.
Mante, V. & Carandini, M. (2005). Mapping of stimulus energy in primary visual cortex. Journal of Neurophysiology 94, 788798.
Martinez, L.M., Wang, Q.B., Reid, R.C., Pillai, C., Alonso, J.M., Sommer, F.T. & Hirsch, J.A. (2005). Receptive field structure varies with layer in the primary visual cortex. Nature Neuroscience 8, 372379.
Medina, J., Meese, T.S. & Mullen, K. (2007). Cross-orientation masking in the red-green isoluminant and luminance systems. Journal of Vision 7, 257a, Abstract 257 (VSS).
Meese, T.S. (2004). Area summation and masking. Journal of Vision 4, 930943.
Meese, T.S., Georgeson, M.A. & Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision 6, 12241243.
Meese, T.S. & Hess, R.F. (2004). Low spatial frequencies are suppressively masked across spatial scale, orientation, field position, and eye of origin. Journal of Vision 4, 843859.
Meese, T.S. & Hess, R.F. (2005). Interocular suppression is gated by interocular feature matching. Vision Research 45, 915.
Meese, T.S., Hess, R.F. & Williams, C.B.W. (2005). Size matters, but not for everyone: Individual differences for contrast discrimination. Journal of Vision 5, 928947.
Meese, T.S. & Holmes, D.J. (2002). Adaptation and gain pool summation: alternative models and masking data. Vision Research 42, 11131125.
Meese, T.S. & Holmes, D.J. (2003). Orientation-masking: suppression and mechanism bandwidth. Perception 32, 388388. (AVA Christmas Abstract).
Meese, T.S. & Holmes, D.J. (2007). Spatial and temporal dependencies of cross-orientation suppression. Proceedings of the Royal Society B 274, 127136.
Meese, T.S., Holmes, D.J. & Challinor, K.L. (2007). Remote facilitation in the Fourier domain. Vision Research 47, 11121119.
Meese, T.S. & Summers, R.J. (2007). Area summation in human vision at and above detection threshold. Proceedings of the Royal Society 274, 28912900.
Meese, T.S., Summers, R.J., Holmes, D.J. & Wallis, S.A. (2007). Contextual modulation involves suppression and facilitation form the centre and the surround. Journal of Vision 7, 121.
Morrone, M.C., Burr, D.C. & Maffei, L. (1982). Functional implications of cross-orientation inhibition of cortical visual cells. 1. Neurophysiological evidence. Proceedings of the Royal Society B 216, 335354.
Naito, T., Sadakane, M., Okamoto, M. & Sato, H. (2007). Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat. Neuroscience 149, 962975.
Nolt, M.J., Kumbhani, R.D. & Palmer, L.A. (2007). Suppression at high spatial frequencies in the lateral geniculate nucleus of the cat. Journal of Neurophysiology 98, 11671180.
Ohzawa, I., Sclar, G. & Freeman, R.D. (1985). Contrast gain-control in the cats visual-system. Journal of Neurophysiology 54, 651667.
Olzak, L.A. & Thomas, J.P. (1999). Neural recoding in human pattern vision: Model and mechanisms. Vision Research 39, 231256.
Olzak, L.A. & Thomas, J.P. (2003). Dual nonlinearities regulate contrast sensitivity in pattern discrimination tasks. Vision Research 43, 14331442.
Parraga, C.A., Troscianko, T. & Tolhurst, D.J. (2005). The effects of amplitude-spectrum statistics on foveal and peripheral discrimination of changes in natural images, and a multi-resolution model. Vision Research 45, 31453168.
Pelli, D.G. (1985). Uncertainty explains many aspects of visual contrast detection and discrimination. Journal of the Optical Society of America A 2, 15081532.
Pelli, D.G. (1987). On the relation between summation and facilitation. Vision Research 27, 119123.
Petrov, Y., Carandini, M. & McKee, S. (2005). Two distinct mechanisms of suppression in human vision. Journal of Neuroscience 25, 87048707.
Priebe, N.J. & Ferster, D. (2006). Mechanisms underlying cross-orientation suppression in cat visual cortex. Nature Neuroscience 9, 552561.
Ringach, D.L., Bredfeldt, C.E., Shapley, R.M. & Hawken, M.J. (2002 a). Orientation selectivity in macaque V1: Diversity and laminar dependence. Journal of Neuroscience 22, 56395651.
Ringach, D.L., Bredfeldt, C.E., Shapley, R.M. & Hawken, M.J. (2002 b). Suppression of neural responses to nonoptimal stimuli correlates with tuning selectivity in macaque V1. Journal of Neurophysiology 87, 10181027.
Ross, J. & Speed, H.D. (1991). Contrast adaptation and contrast masking in human vision. Proceedings of the Royal Society B 246, 6169.
Schwartz, O. & Simoncelli, P. (2001). Natural image statistics and sensory gain control. Nature Neuroscience 4, 819825.
Sclar, G., Maunsell, J.H.R. & Lennie, P. (1990). Coding of image-contrast in central visual pathways of the macaque monkey. Vision Research 30, 110.
Sengpiel, F. & Vorobyov, V. (2005). Intracortical origins of interocular suppression in the visual cortex. Journal of Neuroscience 25, 63946400.
Shapley, R.M. & Victor, J.D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. Journal of Physiology (London) 318, 161179.
Shapley, R.M. & Victor, J.D. (1981). How the contrast gain modifies the frequency responses of cat ganglion cells. Journal of Physiology (London) 285, 275298.
Smith, M.A., Bair, W. & Movshon, J.A. (2006). Dynamics of suppression in macaque primary visual cortex. Journal of Neuroscience 25, 1084410856.
Snowden, R.J. & Hammett, S.T. (1998). The effects of surround contrast on contrast thresholds, perceived contrast and contrast discrimination. Vision Research 38, 19351945.
Solomon, J.A. (2007 a). Contrast discrimination: Second responses reveal the relationship between the mean and variance of visual signals. Vision Research 47, 32473258.
Solomon, J.A. (2007 b). Intrinsic uncertainty explains second responses. Spatial Vision 20, 4560.
Solomon, S.G., Lee, B.B. & Sun, H. (2006). Suppressive surrounds and contrast gain in magnocellular-pathway retinal ganglion cells of macaque. Journal of Neuroscience 26, 87158726.
Solomon, S.G., White, A.J.R. & Martin, P.R. (2002). Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus. Journal of Neuroscience 22, 338349.
Stromeyer, C.F. & Klein, S. (1974). Spatial frequency channels in human vision as asymmetric (edge) mechanisms. Vision Research 14, 14091420.
Summers, R.J. & Meese, T.S. (2007). Area summation is linear but the contrast transducer is nonlinear: Models of summation and uncertainty and evidence from the psychometric function. Perception 36 suppl. 5. (ECVP)
Tolhurst, D.J., Movshon, J.A. & Dean, A.F. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research 23, 775785.
Truchard, A.M., Ohzawa, I. & Freeman, R.D. (2000). Contrast gain control in the visual cortex: Monocular versus binocular mechanisms. Journal of Neuroscience 20, 30173032.
Tse, P.U., Martinez-Conde, S., Schlegel, A.A. & Macknik, S.L. (2005). Visibility, visual awareness, and visual masking of simple unattended targets are confined to areas in the occipital cortex beyond human V1/V2. Proceedings of the National Academy of Sciences of the United States of America 102, 1717817183.
Tsuchiya, N., Koch, C., Gilroy, L.A. & Blake, R. (2006). Depth of interocular suppression associated with continuous flash suppression, flash suppression and binocular rivalry. Journal of Vision 6, 10681078.
Tyler, C.W. & Chen, C.C. (2000). Signal detection theory in the 2AFC paradigm: Attention, channel uncertainty and probability summation. Vision Research 40, 31213144.
Walker, G.A., Ohzawa, I. & Freeman, R.D. (1998). Binocular cross-orientation suppression in the cat's striate cortex. Journal of Neurophysiology 79, 227239.
Wallis, S.A., Georgeson, M.A. & Mehta, P. (2008). Seeing light vs dark lines: Psychophysical performance is based on separate channels, limited by noise and uncertainty. Perception 37 315.
Watson, A.B. (2000). Visual detection of spatial contrast patterns: Evaluation of five simple models. Optics Express 6, 1233.
Watson, A.B., Barlow, H.B. & Robson, J.G. (1983). What does the eye see best. Nature 302, 419422.
Watson, A.B. & Solomon, J.A. (1997). Model of visual contrast gain control and pattern masking. Journal of the Optical Society of America A-Optics Image Science and Vision 14, 23792391.
Webb, B.S., Dhruv, N.T., Solomon, S.G., Tailby, C. & Lennie, P. (2005). Early and late mechanisms of surround suppression in striate cortex of Macaque. Journal of Neuroscience 25, 1166611675.
Weiler, J.A., Maxwell, J.S. & Schor, C.M. (2007). Illusory contrast-induced shifts in binocular visual direction bias saccadic eye movements toward the perceived target position. Journal of Vision 7, 118.
Wetherill, G.B. & Levitt, H. (1965). Sequential estimation of points on a psychometric function. Journal of Experimental Psychology 15, 485492.
Wilson, H.R. (1980). A transducer function for threshold and suprathreshold human-vision. Biological Cybernetics 38, 171178.
Wilson, H.R. & Humanski, R. (1993). Spatial-frequency adaptation and contrast gain-control. Vision Research 33, 11331149.
Wilson, H.R., McFarlane, D.K. & Phillips, G.C. (1983). Spatial-frequency tuning of orientation selective units estimated by oblique masking. Vision Research 23, 873882.
Yu, C., Klein, S.A. & Levi, D.M. (2003). Cross- and iso-oriented surrounds modulate the contrast response function: The effect of surround contrast. Journal of Vision 3, 527540.
Zenger-Landolt, B. & Heeger, D.J. (2003). Response suppression in V1 agrees with psychophysics of surround masking. Journal of Neuroscience 23, 68846893.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed