Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T17:34:41.943Z Has data issue: false hasContentIssue false

Conditions that alter saccadic eye movement latencies and affect target choice to visual stimuli and to electrical stimulation of area V1 in the monkey

Published online by Cambridge University Press:  01 September 2008

PETER H. SCHILLER*
Affiliation:
Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge, Massachusetts
GEOFFREY L. KENDALL
Affiliation:
Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge, Massachusetts
WARREN M. SLOCUM
Affiliation:
Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge, Massachusetts
EDWARD J. TEHOVNIK
Affiliation:
Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge, Massachusetts
*
*Address correspondence and reprint requests to: Peter H. Schiller, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 46-6041, Cambridge, MA 02139. E-mail: phschill@mit.edu

Abstract

In this study, we examined procedures that alter saccadic latencies and target selection to visual stimuli and electrical stimulation of area V1 in the monkey. It has been shown that saccadic eye movement latencies to singly presented visual targets form a bimodal distribution when the fixation spot is turned off a number of milliseconds prior to the appearance of the target (the gap period); the first mode has been termed express saccades and the second regular saccades. When the termination of the fixation spot is coincident with the appearance of the target (0 ms gap), express saccades are rarely generated. We show here that a bimodal distribution of saccadic latencies can also be obtained when an array of visual stimuli is presented prior to the appearance of the visual target, provided the elements of the array overlap spatially with the visual target. The overall latency of the saccadic eye movements elicited by electrical stimulation of area V1 is significantly shortened both when a gap is introduced between the termination of the fixation spot and the stimulation and when an array is presented. However, under these conditions, the distribution of saccadic latencies is unimodal. When two visual targets are presented after the fixation spot, introducing a gap has no effect on which target is chosen. By contrast, when electrical stimulation is paired with a visual target, introducing a gap greatly increases the frequency with which the electrical stimulation site is chosen.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boch, R. & Fischer, B. (1986). Further observations on the occurrence of express-saccades in the monkey. Experimental Brain Research 63, 487494.CrossRefGoogle ScholarPubMed
Bradley, D.C., Troyk, P.R., Berg, J.A., Bak, M., Cogan, S., Erickson, R., Kufta, C., Mascaro, M., McCreery, D., Schmidt, E.M., Towle, V.L. & Xu, H. (2005). Visuotopic mapping through a multichannel stimulating implant in primate V1. Journal of Neurophysiology 93, 16591670.CrossRefGoogle ScholarPubMed
Brindley, G.S. & Lewin, W.S. (1968). The sensations produced by electrical stimulation of the visual cortex. Journal of Physiology 196, 479493.CrossRefGoogle ScholarPubMed
Carpenter, R.H. & Williams, M.L. (1995). Neural computation of log likelihood in control of saccadic eye movements. Nature 377, 5962.CrossRefGoogle ScholarPubMed
Cavegn, D. & d’Ydewalle, G. (1996). Presaccadic attention allocation and express saccades. Psychological Research 59, 157175.CrossRefGoogle ScholarPubMed
Crawford, T.J. & Muller, H.J. (1992). Spatial and temporal effects of spatial attention on human saccadic eye movements. Vision Research 32, 293304.CrossRefGoogle ScholarPubMed
Fischer, B. & Boch, R. (1983). Saccadic eye movements after extremely short reaction times in the monkey. Brain Research 260, 2126.CrossRefGoogle ScholarPubMed
Fischer, B. & Ramsperger, E. (1984). Human express saccades: Extremely short reaction times of goal directed eye movements. Experimental Brain Research 57, 191195.CrossRefGoogle ScholarPubMed
Fischer, B. & Weber, H. (1993). Express saccades and visual attention. Behavioral and Brain Sciences 16, 553567.CrossRefGoogle Scholar
Hikosaka, O. & Wurtz, R.H. (1985). Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. Journal of Neurophysiology 53, 266291.CrossRefGoogle ScholarPubMed
Horstmann, A. & Hoffmann, K.P. (2005). Target selection in eye-hand coordination: Do we reach to where we look or do we look to where we reach? Experimental Brain Research 167, 187195.CrossRefGoogle ScholarPubMed
Kingstone, A. & Klein, R.M. (1993). Visual offsets facilitate saccadic latency: Does predisengagement of visuospatial attention mediate this gap effect? Journal of Experimental Psychology. Human Perception and Performance 19, 12511265.CrossRefGoogle ScholarPubMed
Kveraga, K., Boucher, L. & Hughes, H.C. (2002). Saccades operate in violation of Hick's law. Experimental Brain Research 146, 307314.CrossRefGoogle ScholarPubMed
McPeek, R.M. & Schiller, P.H. (1994). The effects of visual scene composition on the latency of saccadic eye movements of the rhesus monkey. Vision Research 34, 22932305.CrossRefGoogle ScholarPubMed
Pare, M. & Munoz, D.P. (1996). Saccadic reaction time in the monkey: Advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence. Journal of Neurophysiology 76, 36663681.CrossRefGoogle ScholarPubMed
Robinson, D.A. (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vision Research 12, 17951808.CrossRefGoogle ScholarPubMed
Rohrer, W.H. & Sparks, D.L. (1993). Express saccades: The effects of spatial and temporal uncertainty. Vision Research 33, 24472460.CrossRefGoogle ScholarPubMed
Scherberger, H., Goodale, M.A. & Andersen, R.A. (2003). Target selection for reaching and saccades share a similar behavioral reference frame in the macaque. Journal of Neurophysiology 89, 14561466.CrossRefGoogle Scholar
Schiller, P.H. (1977). The effect of superior colliculus ablation on saccades elicited by cortical stimulation. Brain Research 122, 154156.CrossRefGoogle Scholar
Schiller, P.H. (1998). The neural control of visually guided eye movements. In Cognitive Neuroscience of Attention: A Developmental Perspective, ed. Richards, J.E., pp. 350. Mahwah, NJ: Erlbaum.Google Scholar
Schiller, P.H. & Chou, I.H. (1998). The effects of frontal eye field and dorsomedial frontal cortex lesions on visually guided eye movements. Nature Neuroscience 1, 248253.CrossRefGoogle ScholarPubMed
Schiller, P.H.Finlay, B.L. & Volman, S.F. (1976). Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. Journal of Neurophysiology 39, 12881319.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Haushofer, J. (2005). What is the coordinate frame utilized for the generation of express saccades in monkeys? Experimental Brain Research 167, 178186.CrossRefGoogle ScholarPubMed
Schiller, P.H., Haushofer, J. & Kendall, G. (2004 a). An examination of the variables that affect express saccade generation. Visual Neuroscience 21, 119127.CrossRefGoogle ScholarPubMed
Schiller, P.H.Haushofer, J. & Kendall, G. (2004 b). How do target predictability and precueing affect the production of express saccades in monkeys? European Journal of Neuroscience 19, 19631968.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Kendall, J. (2004). Temporal factors in target selection with saccadic eye movements. Experimental Brain Research 154, 154159.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Lee, K. (1994). The effects of lateral geniculate nucleus, area V4, and middle temporal (MT) lesions on visually guided eye movements. Visual Neuroscience 11, 229241.CrossRefGoogle ScholarPubMed
Schiller, P.H., Logothetis, N.K. & Charles, E.R. (1990). Role of the color-opponent and broad-band channels in vision. Visual Neuroscience 5, 321346.CrossRefGoogle ScholarPubMed
Schiller, P.H., Sandell, J.H. & Maunsell, J.H. (1987). The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. Journal of Neurophysiology 57, 10331049.CrossRefGoogle ScholarPubMed
Schiller, P.H., Slocum, W.M., Carvey, C. & Tolias, A.S. (2004 c). Are express saccades generated under natural viewing conditions? The European Journal of Neuroscience 20, 24672473.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Tehovnik, E.J. (2001). Look and see: How the brain moves your eyes about. Progress in Brain Research 134, 127142.CrossRefGoogle Scholar
Schiller, P.H. & Tehovnik, E.J. (2003). Cortical inhibitory circuits in eye-movement generation. The European Journal of Neuroscience 18, 31273133.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Tehovnik, E.J. (2005). Neural mechanisms underlying target selection with saccadic eye movements. Progress in Brain Research 149, 157171.CrossRefGoogle ScholarPubMed
Schiller, P.H., Tehovnik, E.J. & Weiner, V.S. (2005). Preliminary studies examining the feasibility of a visual prosthetic device: 1. What does a monkey see when area V1 is stimulated electrically? Program No. 16.1. In Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience (Online).Google Scholar
Schiller, P.H., True, S.D. & Conway, J.L. (1979). Paired stimulation of the frontal eye fields and the euperior colliculus of the rhesus monkey. ed. Casa-Grande, V., Sherman, S. & Guillery R., Brain Research 179, 162164.Google Scholar
Sommer, M.A. (1994). Express saccades elicited during visual scan in the monkey. Vision Research 34, 20232038.CrossRefGoogle ScholarPubMed
Sommer, M.A., Schiller, P.H. & McPeek, R.M. (1993). What neural pathways mediate express saccades? The Behavioral and Brain Sciences 16, 589590.CrossRefGoogle Scholar
Tam, W.J. & Stelmach, L.B. (1993). Viewing behavior: Ocular and attentional disengagement. Perception and Psychophysics 54, 211222.CrossRefGoogle ScholarPubMed
Tehovnik, E.J., Slocum, W.M., Carvey, C.E. & Schiller, P.H. (2005). Phosphene induction and the generation of saccadic eye movements by striate cortex. Journal of Neurophysiology 93, 119.CrossRefGoogle ScholarPubMed
Tehovnik, E.J., Slocum, W.M. & Schiller, P.H. (1999). Behavioural conditions affecting saccadic eye movements elicited electrically from the frontal lobes of primates. European Journal of Neuroscience 11, 24312443.CrossRefGoogle ScholarPubMed
Tehovnik, E.J., Slocum, W.M. & Schiller, P.H. (2003). Saccadic eye movements evoked by microstimulation of striate cortex. The European Journal of Neuroscience 17, 870878.CrossRefGoogle ScholarPubMed
Weber, H., Durr, N. & Fischer, B. (1998). Effects of pre-cues on voluntary and reflexive saccade generation. II. Pro-cues for anti-saccades. Experimental Brain Research 120, 417431.CrossRefGoogle ScholarPubMed
Weber, H. & Fischer, B. (1994). Differential effects of non-target stimuli on the occurrence of express saccades in man. Vision Research 34, 18831891.CrossRefGoogle ScholarPubMed