Skip to main content Accessibility help
×
×
Home

Contribution of linear mechanisms to the specification of local motion by simple cells in areas 17 and 18 of the cat

  • J. McLean (a1), S. Raab (a1) and L. A. Palmer (a1)

Abstract

A reverse correlation technique, which permits estimation of three-dimensional first-order properties of receptive fields (RFs), was applied to simple cells in areas 17 and 18 of cat. Two classes of simple cells were found. For one class, the spatial and temporal RF characteristics were Separable, i.e. they could be synthesized as the product of spatial and temporal weighting functions. RFs in the other class were Inseparable, i.e. bright and dark subregions comprising each field were obliquely oriented in space-time. Based on a linear superposition model, these observations led to testable hypotheses: (1) simple cells with separable space-time characteristics should be speed but not direction selective and (2) simple cells with inseparable space-time characteristics should be direction selective and the optimal velocity of moving stimuli should be predictable from the slope of the oriented subregions. These hypotheses were tested by comparing responses to moving bars with those predicted by application of the convolution integral. Linear predictions accounted for waveforms of responses to moving bars in detail. For cells with oriented space-time characteristics, the preferred direction was always predicted correctly and the optimal speed was predicted quite well. Most cells with separable space-time characteristics were not direction selective as predicted. The major discrepancies between measured and predicted behavior were twofold. First, 8/32 cells with separable space-time RFs were direction selective. Second, predicted directional indices were weakly correlated with actual measurements. These conclusions hold for simple cells in both areas 17 and 18. The major difference between simple RFs in these areas is the coarser spatial scale seen in area 18. These results demonstrate a significant linear contribution to the speed and direction selectivity of simple cells in areas 17 and 18. Where additional, nonlinear mechanisms are inferred, they appear to act synergistically with the linear mechanism.

Copyright

References

Hide All
Adelson, E.H. & Bergen, J.R. (1985). Spatioteraporal energy models for the perception of motion. Journal of the Optical Society of America A2, 284299.
Albrecht, D.G. & Geisler, W.S. (1991). Motion selectivity and the contrast-response function of simple cells in the visual cortex. Visual Neuroscience 7, 531546.
Baker, C.L. & Cynader, M.S. (1988). Space-time separability of direction selectivity in cat striate cortex neurons. Vision Research 28, 239246.
Barlow, H.B. & Levick, W.R. (1965). The mechanisms of directionally selective units in rabbit’s retina. Journal of Physiology (London) 178, 477504.
Braddick, O. (1974). A short-range process in apparent motion. Vision Research 14, 519527.
Braddick, O. (1980). Low-level and high-level processes in apparent motion. Philosophical Transactions of the Royal Society B (London) 290, 137151.
Burr, D.C., Ross, J. & Morrone, M.C. (1986). Seeing objects in motion. Proceedings of the Royal Society B (London) 227, 249265.
Dean, A.F. & Tolhurst, D.J. (1986). Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex. Experimental Brain Research 62, 143151.
Deangelis, G.C., Ohzawa, I. & Freeman, R.D. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation. Journal of Neurophysiology 69, 11181135.
Deboer, E. & Kuyper, P. (1968). Triggered correlation. IEEE Transactions Bio-medical Engineering 15, 169179.
Eggermont, J.J., Johannesma, P.I.M. & Aertsen, A.M.H.J. (1983). Reverse correlation methods in auditory research. Quarterly Reviews of Biophysics 16, 341414.
Einstein, G., Davis, T.L. & Sterling, P. (1987). Ultrastructure of synapses from the A-laminae of the lateral geniculate nucleus in layer IV of the cat striate cortex. Journal of Comparative Neurology 260, 6375.
Emerson, R.C., Bergen, J.R. & Adelson, E.H. (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Research 32, 203218.
Emerson, R.C. & Citron, M.C. (1988). How linear and nonlinear mechanisms contribute to directional selectivity in simple cells of cat striate cortex. Investigative Ophthalmology and Visual Science (Suppl.) 29, 23.
Emerson, R.C., Citron, M.C., Vaughn, W.J. & Klein, S.A. (1987). Nonlinear directionally selective subunits in complex cells of cat striate cortex. Journal of Neurophysiology 58, 3365.
Emerson, R.C. & Coleman, L. (1981). Does image movement have a special nature for neurons in the cat’s striate cortex? Investigative Ophthalmology and Visual Science (Suppl.) 20, 766783.
Emerson, R.C. & Gerstein, G.L. (1977). Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. Journal of Neurophysiology 40, 136155.
Emerson, R.C., Korenberg, J. & Citron, M.C. (1989). Identification of intensive nonlinearities in cascade models of visual cortex and its relation to cell classification. In Advanced Methods of Physiological System Modelling, ed. Marmarelis, V., pp. 97111. New York: Plenum.
Ferster, D. (1986). Orientation selectivity of synaptic potentials in neurons of cat visual cortex. Journal of Neuroscience 6, 12841301.
Ferster, D. (1987). Origin of orientation-selective EPSPs in simple cells of cat visual cortex. Journal of Neuroscience 7, 17801791.
Ferster, D. (1988). Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. Journal of Neuroscience 8, 11721180.
Ferster, D. (1990 a). X-and Y-mediated synaptic potentials in neurons of areas 17and 18 of cat visual cortex. Visual Neuroscience 4, 115133.
Ferster, D. (1990 b). X-and Y-mediated current sources in areas 17 and 18 of cat visual cortex. Visual Neuroscience 4, 135145.
Ferster, D. & Jagadeesh, B. (1991). Nonlinearity of spatial summation in simple cells of areas 17 and 18 of cat visual cortex. Journal of Neuroscience 66, 16671679.
Ferster, D. & Lindstrom, S. (1983). An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. Journal of Physiology (London) 342, 181216.
Glezer, V.D., Tsherbach, T.A., Gauselman, V.E. & Bondarko, V.M. (1982). Spatio-temporal organization of receptive fields of the cat striate cortex. Biological Cybernetics 43, 3549.
Goodwin, A.W., Henry, G.H. & Bishop, P.O. (1975). Direction selectivity of simple striate cells: Properties and mechanism. Journal of Neurophysiology 38, 15001523.
Hamilton, D.B., Albrecht, D.G. & Geisler, W.S. (1989). Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function. Vision Research 29, 12851308.
Heeger, D.J. (1992). Half-squaring in responses of cat striate cells. Visual Neuroscience 9, 427443.
Heggelund, P. (1986). Quantitative studies of enhancement and suppression zones in the receptive field of simple cells in cat striate cortex. Journal of Physiology 373, 293310.
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology (London) 160, 106154.
Jones, J.P. & Palmer, L.A. (1987 a). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 11871211.
Jones, J.P. & Palmer, L.A. (1987 b). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 12331258.
Levick, W.R. (1972). Another tungsten microelectrode. Medical and Biological Engineering 10, 510515.
Mastronarde, D.N. (1987 a). Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. Journal of Neurophysiology 57, 357380.
Mastronarde, D.N. (1987 b). Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. Journal of Neurophysiology 57, 381413.
McLean, J. & Palmer, L.A. (1988). Contribution of linear mechanisms to direction selectivity of simple cells in areas 17 and 18 of the cat. Investigative Ophthalmology and Visual Science (Suppl.) 29, 23.
McLean, J. & Palmer, L.A. (1989). Contribution of linear spatiotemporal receptive-field structure to velocity selectivity of simple cells in area 17 of cat. Vision Research 29, 675679.
McLean, J. & Palmer, L.A. (1994). Organization of simple cell responses in the three-dimensional frequency domain. Visual Neuroscience 11, 295306.
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978 a). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex. Journal of Physiology 283, 101120.
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978 b). Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. Journal of Physiology 283, 5377.
Mullikin, W.H., Jones, J.P. & Palmer, L.A. (1984). Periodic simple cells in cat area 17. Journal of Neurophysiology 52, 372387.
Orban, G.A. (1984). Neuronal Operations in the Visual Cortex. Berlin: Springer-Verlag.
Orban, G.A., Kennedy, H. & Maes, H. (1981 a). Response to movement of neurons in area 17 and 18 of the cat: Direction selectivity. Journal of Neurophysiology 45, 10591073.
Orban, G.A., Kennedy, H. & Maes, H. (1981 b). Response to movement of neurons in area 17 and 18 of the cat: Velocity sensitivity. Journal of Neurophysiology 45, 10431058.
Palmer, L.A. & Davis, T.L. (1981). Receptive-field structure in cat striate cortex. Journal of Neuro0physiology 46, 260276.
Palmer, L.A., Jones, J.P. & Gottschalk, A.G. (1987). Constraints on the estimation of spatial receptive-field profiles of simple cells in visual cortex. In Advanced Methods of Physiological System Modelling, ed. Marmarelis, V., pp. 205216. Los Angeles, CA: Biomedical Simulations Resource.
Pollen, D.A., Gaska, J.P. & Jacobson, L.D. (1989). Physiological constraints on models of visual cortical function. In Models of Brain Function, ed. Cotterill, R.M.J., pp. 115135. Cambridge, U.K.: Cambridge University Press.
Pollen, D.A. & Ronner, S.F. (1982). Spatial computation performed by simple and complex cells in the visual cortex of the cat. Vision Research 22, 101118.
Raab, S.S., McLean, J., Stepnoski, R.A. & Palmer, L.A. (1988). Simple cell behavior is predicted by a push-pull model incorporating cospatial lateral geniculate (LGN) cell input. Society for Neuroscience Abstracts 14, 899.
Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In Sensory Communication, ed. Rosenblith, W.A., pp. 307317. New York: Wiley.
Reid, R.C., Soodak, R.E. & Shapley, R.M. (1987). Linear mechanisms of directional selectivity in simple cells of cat striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 84, 87408744.
Reid, R.C., Soodak, R.E. & Shapley, R.M. (1991). Direction selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. Journal of Neurophysiology 66, 505529.
Saul, A.B. & Humphrey, A.L. (1990 a). Evidence of lagged-type geniculate input to visual cortex. Society for Neuroscience Abstracts 16, 1218.
Saul, A.B. & Humphrey, A.L. (1990 b). Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. Journal of Neurophysiology 64, 206224.
Schiller, P.H., Sandell, J.H. & Maunsell, J.H.R. (1986). Functions of the ON and OFF channels of the visual system. Nature 322, 824825.
Sherk, H. & Horton, J.C. (1984). Receptive-field properties in cat’s area 17 in the absence of ON-center geniculate input. Journal of Neuroscience 4, 381393.
Sillito, A.M. (1975). The contribution of inhibitory mechanisms to the receptive-field properties of neurons in the striate cortex of cat. Journal of Physiology (London) 250, 305329.
Skottun, B.C., Devalois, R.L., Grosof, D.H., Movshon, A.J., Albrecht, D.G. & Bonds, A.B. (1991). Classifying simple and complex cells on the basis of response modulation. Visual Research 31, 10791086.
Sterling, P. (1983). Microcircuitry of the cat retina. Annual Review of Neuroscience 6, 149185.
Tolhurst, D.J. & Dean, A.F. (1990). The effects of contrast on the linearity of spatial summation of simple cells in the cat’s striate cortex. Experimental Brain Research 79, 582588.
Tusa, R.J., Palmer, L.A. & Rosenquist, A.C. (1981). Multiple cortical visual areas: Visual field topography in the cat. In Cortical Sensory Organization, Vol. 2, Multiple Visual Areas, ed. Woolsey, C.N., pp. 131. The Humana Press.
Watson, A.B. & Ahumada, A.J. (1983). A look at motion in the frequency domain. NASA Technical Memorandum 84, 352.
Watson, A.B. & Ahumada, A.J. (1985). Model of human visual-motion sensing. Journal of the Optical Society of America A 2, 11241132.
Watson, A.B., Ahumada, A.J. & Farrell, J.E. (1986). Window of visibility: A psychophysical theory of fidelity in time-sampled visual motion displays. Journal of the Optical Society of America A 3, 300307.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed