Skip to main content Accessibility help

A cortical locus for anisotropic overlay suppression of stimuli presented at fixation



Human contrast sensitivity for narrowband Gabor targets is suppressed when superimposed on narrowband masks of the same spatial frequency and orientation (referred to as overlay suppression), with suppression being broadly tuned to orientation and spatial frequency. Numerous behavioral and neurophysiological experiments have suggested that overlay suppression originates from the initial lateral geniculate nucleus (LGN) inputs to V1, which is consistent with the broad tuning typically reported for overlay suppression. However, recent reports have shown narrowly tuned anisotropic overlay suppression when narrowband targets are masked by broadband noise. Consequently, researchers have argued for an additional form of overlay suppression that involves cortical contrast gain control processes. The current study sought to further explore this notion behaviorally using narrowband and broadband masks, along with a computational neural simulation of the hypothesized underlying gain control processes in cortex. Additionally, we employed transcranial direct current stimulation (tDCS) in order to test whether cortical processes are involved in driving narrowly tuned anisotropic suppression. The behavioral results yielded anisotropic overlay suppression for both broadband and narrowband masks and could be replicated with our computational neural simulation of anisotropic gain control. Further, the anisotropic form of overlay suppression could be directly modulated by tDCS, which would not be expected if the suppression was primarily subcortical in origin. Altogether, the results of the current study provide further evidence in support of an additional overlay suppression process that originates in cortex and show that this form of suppression is also observable with narrowband masks.


Corresponding author

*Address correspondence to: Bruce C. Hansen, Department of Psychology, Neuroscience Program, Colgate University, 107B Olin Hall, Hamilton, NY 13346. E-mail:


Hide All
Accornero, N., Pietro, L.V., Riccia, M.L. & Gregori, B. (2007). Visual evoked potentials modulation during direct current cortical polarization. Experimental Brain Research 178, 261266.
Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2(2), 284299.
Akasaki, T., Sato, H., Yoshimura, Y., Ozeki, H. & Shimegi, S. (2002). Suppressive effects of receptive field surround on neuronal activity in the cat primary visual cortex. Neuroscience Research 43, 207220.
Antal, A., Nitsche, M.A. & Paulus, W. (2001). External modulation of visual perception in humans. Neuroreport 12(16), 35533555.
Antal, A., Kincses, T.Z., Nitsche, M.A. & Paulus, W. (2003a). Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Neuropsychologia 150, 18021807.
Antal, A., Kincses, T.Z., Nitsche, M.A. & Paulus, W. (2003b). Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia 41, 18021807.
Antal, A., Kincses, T.Z., Nitsche, M.A., Bartfai, O. & Paulus, W. (2004a). Excitability changes induved in the human primary visual cortex by transcranial direct current stimulation: Direct electrophysiological evidence. Investigative Ophthalmology & Visual Science 45, 702707.
Antal, A., Nitsche, M.A., Kruse, W., Kincses, T.Z., Horrmann, K-L. & Paulus, W. (2004b). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience 16, 521527.
Antal, A., Nitsche, M.A. & Paulus, W. (2006). Transcranial direct current stimulation and the visual cortex. Brain Research Bulletin, 68(6), 459463.
Antal, A. & Paulus, W. (2008). Transcranial direct current stimulation and visual perception. Perception 37(3), 367374.
Antal, A., Kovács, G., Chaieb, L., Paulus, W. & Greenlee, M.W. (2012). Cathodal stimulation of human MT+ leads to elevated fMRI signal: A tDCS-fMRI study. Restorative Neurology & Neuroscience 30, 255263.
Baker, D.H., Meese, T.S. & Summers, R.J. (2007). Psychophysical evidence for two routes to suppression before binocular summation of signal in human vision. Neuroscience 146, 435448.
Bauman, L.A. & Bonds, A.B. (1991). Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex. Vision Research 31(6), 933944.
Bex, P.J., Mareschal, I. & Dakin, S.C. (2007). Contrast gain control in natural scenes. Journal of Vision 7(11), 112.
Bikson, M. & Rahman, A. (2013). Origins of specificity during tDCS: Anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience 7, 688.
Bonds, A.B. (1989). Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Visual Neuroscience 2(1), 4155.
Bonds, A.B. (1991). Temporal dynamics of contrast gain in single cells of cat striate cortex. Visual Neuroscience 6(03), 239255.
Bonin, V., Mante, V. & Carandini, M. (2005). The suppressive field of neurons in lateral geniculate nucleus. Journal of Neuroscience 25, 1084410856.
Bosking, W.H., Zhang, Y., Schofield, B. & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. Journal of Neuroscience 17(6), 21122127.
Campbell, F.W. & Robson, J.G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology 197(3), 551566.
Carandini, M., Demb, J.B., Mante, V., Tolhurst, D.J., Dan, Y., Olshausen, B.A., Gallant, J. & Rust, N. (2005). Do we know what the early visual system does? Journal of Neuroscience 25(46), 1057710597.
Carandini, M. & Heeger, D.J. (1994). Summation and division by neurons in primate visual cortex. Science 264, 13331336.
Carandini, M. & Heeger, D.J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience 13, 5162.
Carandini, M., Heeger, D.J. & Movshon, J.A. (1997). Linearity and normalization in simple cells of the macaque primary visual cortex. Journal of Neuroscience 17, 86218644.
Carandini, M. & Ringach, D.L. (1997). Predictions of a recurrent model of orientation selectivity. Vision Research 37(21), 30613071.
Cavanaugh, J.R., Bair, W. & Movshon, J.A. (2002). Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. Journal of Neurophysiology 88, 25472556.
Chance, F.S. & Abbott, L.F. (2000). Divisive inhibition in recurrent networks. Network: Compuational Neural System 11, 119129.
Chance, F.S., Abbott, L.F. & Reyes, A.D. (2002). Gain modulation from background synaptic input. Neuron 35, 773782.
Chapman, B. & Bonhoeffer, T. (1998). Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17. Proceedings of the National Academy of Sciences of the United States of America 95, 26092614.
Chapman, B., Stryker, M.P. & Bonhoeffer, T. (1996). Development of orientation preference maps in ferret primary visual cortex. Journal of Neuroscience 16, 64436453.
Chen, C.C. & Tyler, C.W. (2008). Excitatory and inhibitory interaction fields of flankers revealed by contrast-masking functions. Journal of Vision 8, 114.
Chu, P., Milton, J. & Cowan, J. (1994). Connectivity and the dynamics of integrate-and-fire neural networks. International Journal of Bifurcation and Chaos 4(1), 237243.
Coppola, D.M., White, L.E., Fitzpatrick, D. & Purves, D. (1998). Unequal representation of cardinal and oblique contours in ferret visual cortex. Proceedings of the National Academy of Sciences of the United States of America 95, 26212623.
Creutzfeldt, O.D., Fromm, G.H. & Kapp, H. (1962). Influence of transcortical d-c currents on cortical neural activity. Experimental Neurology 5, 436452.
Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D. & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation 2(4), 201207.
Dayan, P. & Abbott, L.F. (2005). Theoretical Neuroscience: Computational And Mathematical Modeling Of Neural Systems, eds. Sejnowski, T.J. & Poggio, T., p. 480. Cambridge: The MIT Press.
DeAngelis, G.C., Robson, J.G., Ohzawa, I. & Freeman, R.D. (1992). Organization of suppression in receptive fields of neurons in cat visual cortex. Journal of Neurophysiology 68(1), 144163.
DeAngelis, G.C., Freeman, R.D. & Ohzawa, I. (1994). Length and width tuning of neurons in the cat’s primary visual cortex. Journal of Neurophysiology 71, 347374.
De Valois, R.L., Albrecht, D.G. & Thorell, L.G. (1982a). Spatial frequency selectivity of cells in macaque visual cortex. Vision Research 22(5), 545559.
De Valois, R.L., Yund, E.W. & Hepler, N. (1982b). The orientation and direction selectivity of cells in macaque visual cortex. Vision Research 22(5), 531544.
Essock, E.A., DeFord, J.K., Hansen, B.C. & Sinai, M.J. (2003). Oblique stimuli are seen best (not worst!) in naturalistic broadband stimuli: A horizontal effect. Vision Research 43, 13291335.
Essock, E.A., Haun, A.M. & Kim, Y-J. (2009). An anisotropy of orientation-tuned suppression that matches the anisotropy of typical natural scenes. Journal of Vision 9(1), 115.
Evans, B.D. & Stringer, S.M. (2013). How lateral connections and spiking dynamics may separate multiple objects moving together. PloS One 8(8), e69952.
Field, D.J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A 4(12), 23792394.
Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Current Opinion in Neurobiology 10(4), 438443.
Foley, J.M. (1994). Human luminance pattern-vision mechanisms: Masking experiments require a new model. Journal of the Optical Society of America A 11(6), 17101719.
Freeman, T.C.B., Durand, S., Kiper, D.C. & Carandini, M. (2002). Suppression without inhibition in visual cortex. Neuron 35, 759771.
Geisler, W.S. & Albrecht, D.G. (1992). Cortical neurons: Isolation of contrast gain control. Vision Research 32, 14091410.
Graham, N. & Nachmias, J. (1971). Detection of grating patterns containing two spatial frequencies: A comparison of single-channel and multiple-channels models. Vision Research 11(3), 251259.
Graham, N.V. & Sutter, A. (2000). Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision. Vision Research 40, 27372761.
Hansen, B.C., Essock, E.A., Zheng, Y. & DeFord, J.K. (2003). Perceptual anisotropies in visual processing and their relation to natural image statistics. Network: Computation in Neural Systems 14(3), 501526.
Hansen, B.C. & Essock, E.A. (2004). A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. Journal of Vision 4(12), 10441060.
Hansen, B.C. & Essock, E.A. (2006). Anisotropic local contrast normalization: The role of stimulus orientation and spatial frequency bandwidths in the oblique and horizontal effect perceptual anisotropies. Vision Research 46, 43984415.
Hansen, B.C., Haun, A.M. & Essock, E.A. (2008). The “Horizontal effect”: A perceptual anisotropy in visual processing of naturalistic broadband stimuli. In Visual Cortex: New Research, eds. Portocello, T.A. & Velloti, R.B., New York: Nova Science Publishers.
Hansen, B.C. & Hess, R.F. (2012). On the effectiveness of noise masks: Naturalistic vs. un-naturalistic image statistics. Vision Research 60, 101113.
Hansen, B.C., Andres, K., Essock, E.A., Spiegel, D.P. & Thompson, B. (2013). A cortical locus for overlay suppression with broadband stimuli revealed through transcranial direct current stimulation. Journal of Vision 13, 38.
Haun, A.M. & Essock, E.A. (2010). Contrast sensitivity for oriented patterns in 1/f noise: Contrast response and the horizontal effect. Journal of Vision 10(10), 112.
Haun, A.M. & Peli, E. (2013). Perceived contrast in complex images. Journal of Vision 13, 121.
Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience 9, 181197.
Holt, G. & Koch, C. (1997). Shunting inhibition does not have a divisive effect on firing rates. Neural Computation 9(5), 10011013.
Huang, P-C. & Hess, R.F. (2008). The dynamics of collinear facilitation: Fast but sustained. Vision Research 48, 27152722.
Jacobson, L., Koslowsky, M. & Lavidor, M. (2012). TDCS polarity effects in motor and cognitive domains: A meta-analytical review. Experimental Brain Research 216, 110.
Jones, J.P. & Palmer, L.A. (1987). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58(6), 11871211.
Kennedy, H., Martin, K.A., Orban, G.A. & Whitteridge, D. (1985). Receptive field properties of neurons in visual area 1 and visual area 2 in the baboon. Neuroscience 14, 405415.
Kim, Y-J., Gheiratmand, M. & Mullen, K.T. (2013). Cross-orientation masking in human color vision: Application of a two-stage model to assess dichoptic and monocular sources of suppression. Journal of Vision 13(6), 114.
Kim, Y-J., Haun, A.M. & Essock, E.A. (2010). The horizontal effect in suppression: Anisotropic overlay and surround suppression at high and low speeds. Vision Research 50(9), 838849.
Kohn, A. (2007). Visual Adaptation: Physiology, mechanisms, and functional benefits. Journal of Neurophysiology 97(5), 31553164.
Kraft, A., Roehmel, J., Olma, M.C., Schmidt, S., Irlbacher, K. & Brandt, S.A. (2010). Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Experimental Brain Research 207(3–4), 283290.
Legge, G.E. & Foley, J.M. (1980). Contrast masking in human vision. Journal of the Optical Society of America 70(12), 14581471.
Li, B., Peterson, M.R. & Freeman, R.D. (2003). Oblique effect: A neural basis in the visual cortex. Journal of Neurophysiology 90, 204217.
Li, B., Thompson, J.K., Duong, T., Peterson, M.R. & Freeman, R.D. (2006). Origins of cross-orientation suppression in the visual cortex. Journal of Neurophysiology 96, 17551764.
Liu, Y.H. & Wang, X.J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience 10(1), 2545.
Ly, C. & Doiron, B. (2009). Divisive gain modulation with dynamic stimuli in integrate-and-fire neurons. PLoS Computational Biology 5(4), 112.
Maffei, L. & Campbell, F.W. (1970). Neurophysiological localization of the vertical and horizontal visual coordinates in man. Science 167, 386387.
Maffei, L. & Fiorentini, A. (1973). The visual cortex as a spatial frequency analyser. Vision Research 13(7), 12551267.
Mansfield, R.J. (1974). Neural basis of orientation perception in primate vision. Science 186, 11331135.
Mansfield, R.J. & Ronner, S.F. (1978). Orientation anisotropy in monkey visual cortex. Brain Research 149, 229234.
McCormick, D.A., Connors, B.W., Lighthall, J.W. & Prince, D.A. (1985). Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology 54(4), 782806.
Meese, T.S. & Baker, D.H. (2009). Cross-orientation masking is speed invariant cross-orientation masking is speed invariant between ocular pathways but speed dependent within them. Journal of Vision 9, 115.
Meese, T.S. & Hess, R.F. (2004). Low spatial frequencies are suppressively masked across spatial scale, orientation, field position, and eye of origin. Journal of Vision 4(10), 843859.
Meese, T.S. & Holmes, D.J. (2007). Spatial and temporal dependencies of cross-orientation suppression in human vision. Proceedings of the Royal Society of London B 274(1606), 127136.
Meese, T.S. & Holmes, D.J. (2010). Orientation masking and cross-orientation suppression (XOS): Implications for estimates of filter bandwidth. Journal of Vision 10(12), 9.
Meese, T.S., Challinor, K.L., Summers, R.J. & Baker, D.H. (2009). Suppression pathways saturate with contrast for parallel surrounds but not for superimposed cross-oriented masks. Vision Research 49(24), 29272935.
Meier, L. & Carandini, M. (2002). Masking by fast gratings. Journal of Vision 2(4), 293301.
Merigan, W.H. & Maunsell, J.H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience 16, 369402.
Minhas, P., Datta, A. & Bikson, M. (2011). Cutaneous perception during tDCS: Role of electrode shape and sponge salinity. Clinical Neurophysiology 122, 637638.
Morrone, M.C., Burr, D.C. & Maffei, L. (1982). Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proceedings of the Royal Society London, B 216(1204), 335354.
Morrone, M.C., Burr, D.C. & Speed, H.D. (1987). Cross-orientation inhibition in cat is GABA mediated. Experimental Brain Research 67(3), 635644.
Nitsche, M.A. & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology 527(3), 633639.
Nitsche, M.A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., Henning, S., Tergau, F. & Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. Journal of Physiology 533, 293301.
Nitsche, M.A., Doemkes, S., Karakose, T., Antal, A., Liebetanz, D., Lang, N., Tergau, F. & Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology 97, 31093117.
Nitsche, M.A., Cohen, L.G., Wassermann, E.M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P.S., Fregni, F. & Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation 1(3), 206223.
Nitsche, M.A. & Paulus, W. (2011). Transcranial direct current stimulation—Update 2011. Restorative Neurology and Neuroscience 29(3), 463492.
Ohzawa, I., Sclar, G. & Freeman, R.D. (1985). Contrast gain control in the cat’s visual system. The Journal of Neurophysiology, 54(3), 651667.
Olma, M.C., Kraft, A., Roehmel, J., Irlbacher, K. & Brandt, S.A. (2011). Excitability changes in the visual cortex quantified with signal detection analysis. Restorative Neurology and Neuroscience 29, 453461.
Olzak, L.A. (1985). Interactions between spatially tuned mechanisms: Converging evidence. Journal of the Optical Society of America A 2(9), 15511559.
Olzak, L.A. & Thomas, J.P. (1991). When orthogonal orientations are not processed independently. Vision Research 31(1), 5157.
Osaki, H., Naito, T., Sadakane, O., Okamoto, M. & Sato, H. (2011). Surround suppression by high spatial frequency stimuli in the cat primary visual cortex. European Journal of Neuroscience 33, 923932.
Pantle, A. & Sekuler, R. (1968). Size-detecting mechanisms in human vision. Science 162(858), 11461148.
Petrov, Y., Carandini, M. & McKee, S. (2005). Two distinct mechanisms of suppression in human vision. Journal of Neuroscience 25(38), 87048707.
Petrov, Y., Verghese, P. & McKee, S.P. (2006). Collinear facilitation is largely uncertainty reduction. Journal of Vision 6(2), 170178.
Phillips, G.C. & Wilson, H.R. (1984). Orientation bandwidths of spatial mechanisms measured by masking. Journal of the Optical Society of America A 1(2), 226232.
Polat, U. & Norcia, A.M. (1996). Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human visual cortex. Vision Research 36(14), 20992109.
Polat, U. & Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research 33, 993999.
Pugh, M.C., Ringach, D.L., Shapley, R. & Shelley, M.J. (1999). Computational modeling of orientation tuning dynamics in monkey primary visual cortex. Journal of Computational Neuroscience 8(2), 143159.
Pugh, M.C., Ringach, D.L., Shapley, R. & Shelley, M.J. (2000). Computational modeling of orientation tuning dynamics in monkey primary visual cortex. Journal of Computational Neuroscience 8, 143159.
Purpura, D.P. & McMurty, J.G. (1965). Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology 28, 166185.
Priebe, N.J. & Ferster, D. (2006). Mechanisms underlying cross-orientation suppression in cat visual cortex. Nature Neuroscience 9, 552561.
Radman, T., Ramos, R.L., Brumberg, J.C. & Bikson, M. (2009). Role of cortical cell type and morphology in sub-and suprathreshold uniform electric field stimulation. Brain Stimulation 2(4), 215228.
Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L.C. & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. The Journal of Physiology 591(Pt 10), 25632578.
Reato, D., Rahman, A., Bikson, M. & Parra, L.C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. Journal of Neuroscience, 30(45), 1506715079.
Reid, R. & Alonso, J. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378(16), 281284.
Ringach, D.L., Hawken, M.J. & Shapley, R. (2002). Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. Journal of Vision 2(1), 1224.
Ross, J. & Speed, H.D. (1991). Contrast adaptation and contrast masking in human vision. Proceedings. Biological Sciences / The Royal Society 246(1315), 6169.
Rudolph-Lilith, M., Dubois, M. & Destexhe, A. (2009). Analytical integrate-and-fire neuron models with conductance-based dynamics and realistic PSP time course for event-driven simulation strategies. In BMC Neuroscience, Vol. 10, p. 23.
Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. (2000a). Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. Journal of Neuroscience 20(11), 42864299.
Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. (2000b). Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. Journal of Neuroscience 20(11), 42674285.
Schwartz, O. & Simoncelli, E.P. (2001). Natural signal statistics and sensory gain control. Nature Neuroscience 4, 819825.
Shapley, R. & Lennie, P. (1985). Spatial frequency analysis in the visual system. Annual Review of Neuroscience 8, 547583.
Somers, D., Nelson, S. & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience 75(8), 54485465.
Spiegel, D.P., Hansen, B.C., Byblow, W.D. & Thompson, B. (2012). Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex. PLoS One 7(5), 19.
Stagg, C.J., Best, J.G., Stephenson, M.C., O’Shea, J., Wylezinska, M., Kincses, Z.T., Morris, P.G., Matthews, P.M. & Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience 29(16), 52025206.
Stagg, C.J. & Nitsche, M.A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist 17(1), 3753.
Tehovnik, E.J. (1996). Electrical stimulation of neural tissue to evoke behavioral responses. Journal of Neuroscience Methods 65, 117.
Tiao, Y.C. & Blakemore, C. (1976). Functional organization in the visual cortex of the golden hamster. Journal of Comparative Neurology 168, 459481.
Troyer, T.W., Krukowski, A.E. & Miller, K.D. (2002). LGN input to simple cells and contrast-invariant orientation tuning: An analysis. Journal of Neurophysiology 87, 27412751.
Troyer, T.W., Krukowski, A.E., Priebe, N.J. & Miller, K.D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience 18(15), 59085927.
Tyler, C.W. (1997). Colour bit-stealing to enhance the luminance resolution of digital displays on a single pixel basis. Spatial Vision 10(4), 369377.
Walker, G.A., Ohzawa, I. & Freeman, R.D. (2000). Suppression outside the classical cortical receptive field. Visual Neuroscience 17, 369379.
Watson, A. & Solomon, J. (1997). Model of visual contrast gain control and pattern masking. Journal of the Optical Society of America A 14(9), 2379.
Wilson, H.R. & Bergen, J.R. (1979). A four mechanism model for threshold spatial vision. Vision Research 19(1), 1932.
Wilson, H.R. & Humanski, R. (1993). Spatial frequency adaptation and contrast gain control. Vision Research 33, 11331149.
Yu, C., Klein, S.A. & Levi, D.M. (2002). Facilitation of contrast detection by cross-oriented surround stimuli and its psychophysical mechanisms. Journal of Vision 2(3), 243255.
Yu, H.B. & Shou, T.D. (2000). The oblique effect revealed by optical imaging in primary visual cortex of cats. Acta Physiologica Sinica 52, 431434.
Zemon, V., Gutowski, W. & Horton, T. (1983). Orientational anisotropy in the human visual system: An evoked potential and psychophysical study. International Journal of Neuroscience 19, 259286.


Related content

Powered by UNSILO

A cortical locus for anisotropic overlay suppression of stimuli presented at fixation



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.