Skip to main content
    • Aa
    • Aa

Are there separate ON and OFF channels in fly motion vision?

  • Martin Egelhaaf (a1) and Alexander Borst (a1)

Visual information is processed in a series of subsequent steps. The performance of each of these steps depends not only on the computations it performs itself but also on the representation of the visual surround on which it operates. Here we investigate the consequences of signal preprocessing for the performance of the motion-detection system of the fly. In particular, we analyze whether the retinal input signals are rectified and segregate into separate ON and OFF channels, which then feed independent parallel motion-detection pathways. We recorded the activity of an identified directionally selective interneuron (HI-cell) in response to apparent motion stimuli, i.e. sequential brightness changes at two neighboring locations in the visual field, as well as to brightness changes at only a single location. For apparent motion stimuli, the motion-dependent response component was determined by subtracting from the overall response the responses to the individual stimulus components when presented alone. The following conclusions could be derived: (1) Apparent motion consisting of a sequence of increased or decreased brightness at two locations in the visual field have the same optimum interstimulus time interval (Fig. 3). (2) Sequences of brightness steps of like polarity (either increments or decrements) elicit positive and negative motion-dependent response components when mimicking motion in the cell's preferred and null direction, respectively. The motion-dependent response components are inverted in sign when the brightness steps of a stimulus sequence have a different polarity (Fig. 7). (3) The responses to the beginning and the end of a brightness pulse depend on the pulse duration. For pulse durations of less than 2 s, both events interact with each other (Fig. 9). All of these results do not provide any indication that the fly processes motion information in independent ON and OFF motion detectors. Brightness changes of both signs are rather represented at the input of the same movement detectors, and interactions between signals resulting from both brightness increments and decrements take their sign into account. This type of preprocessing of the retinal input is argued to render a motion-detection system particularly robust against noise.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S.M. Anstis (1970). Phi motion as a subtraction process. Vision Research 10, 14111430.

S.M. Anstis & G. Mather (1985). Effects of luminance and contrast on direction of ambiguous apparent motion. Perception 14, 167179.

S.M. Anstis & B.J. Rogers (1975). Illusory reversal of visual depth and movement during changes of contrast. Vision Research 15, 957961.

A. Borst & M. Egelhaaf (1987). Temporal modulation of luminance adapts time constant of fly movement detectors. Biological Cybernetics 56, 209215.

A. Borst & M. Egelhaaf (1989). Principles of visual motion detection. Trends in Neuroscience 12, 297306.

A. Borst & M. Egelhaaf (1990). Direction selectivity of fly motionsensitive neurons is computed in a two-stage process. Proceedings of the National Academy of Sciences of the U.S.A. 87, 93639367.

E. Buchner (1976). Elementary movement detectors in an insect visual system. Biological Cybernetics 24, 85101.

E. Buchner (1984). Behavioural analysis of spatial vision in insects. In Photoreception and Vision in Invertebrates, ed. M.A. Ali , pp.561621. New York, London: Plenum Press.

P. Cavanagh & G. Mather (1989). Motion: The long and short of it. Spatial Vision 4, 103129.

P.E. Coombe , M.V. Srinivasan & R.G. Guy (1989). Are the large monopolar cells of the insect lamina on the optomotor pathway? Journal of Comparative Physiology A 166, 2335.

H. Eckert (1973). Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L. Kybernetik 14, 123.

H. Eckert (1980). Functional properties of the Hl-neurone in the third optic ganglion of the blowfly, Phaenicia. Journal of Comparative Physiology 135, 2939.

M. Egelhaaf & A. Borst (1989). Transient and steady-state response properties of movement detectors. Journal of the Optical Society of America A 6, 116127. Errata: Journal of the Optical Society of America A 7, 172.

M. Egelhaaf , A. Borst & W. Reichardt (1989). The computational structure of a biological motion detection system. Journal of the Optical Society of America A 6, 10701087.

M. Egelhaaf , A. Borst & B. Pilz (1990). The role of GABA in detecting visual motion. Brain Research 509, 156160.

E.V. Famiglietti (1983). On and off pathways through amacrine cells in mammalian retina: The synaptic connections of “starburst” amacrine cells. Vision Research 23, 12651279.

A. Fiorentini , G. Baumgartner , S. Magnussen , P.H. Schiller & J.P. Thomas (1990). The perception of brightness and darkness: Relations to neuronal receptive fields. In Visual Perception. The Neurophysiological Foundations, ed. L. Spillman & J.S. Werner , pp. 129161. New York: Academic Press.

N. Franceschini , A. Riehle & A. Le Nestour (1989). Directionally selective motion detection by insect neurons. In Facets of Vision, ed. D.G. Stavenga & R.C. Hardie , pp. 360390. Berlin, Heidelberg: Springer-Verlag.

K.G. Götz (1964). Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 7792.

K.G. Götz (1965). Die optischen Uöbertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2, 215221.

B. Hassenstein (1958). Über die Wahrnehmung der Bewegung von Fig 164 M. Egelhaaf and A. Borst uren und unregelmäBigen Helligkeitsmustern. Zeitschrift für Vergleichende Physiologie 40, 556592.

K. Hausen (1982). Motion sensitive interneurons in the optomotor system of the fly. I. The Horizontal Cells: Structure and signals. Biological Cybernetics 45, 143156.

R. Hengstenberg (1982). Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. Journal of Comparative Physiology A 149, 179193.

G.A. Horridge & L. Marcelja (1990). Responses of the H1 neuron of the fly to jumping edges. Philosophical Transactions of the Royal Society B (London) 329, 6573.

J. Kien (1974 a). Sensory integration in the locust optomotor system — I: Behavioural analysis. Vision Research 14, 12451254.

J. Kien (1974 b). Sensory integration in the locust optomotor system II: Direction selective neurons in the circumoesophageal connectives and the optic lobe. Vision Research 14, 12551268.

J. Kien (1975). Neuronal mechanisms subserving directional selectivity in the locust optomotor system. Journal of Comparative Physiology 102, 337355.

S. Laughlin (1981). Neural principles in the peripheral visual system. In Handbook of Sensory Physiology, VII/6B, ed. H. Autrum , pp. 133280. Berlin, Heidelberg, New York: Springer.

S.B. Laughlin & R.C. Hardie (1978). Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. Journal of Comparative Physiology 128, 319340.

S.B. Laughlin (1987). Form and function in retinal processing. Trends in Neuroscience 10, 478483.

S.B. Laughlin , J. Howard & B. Blakeslee (1987). Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proceedings of the Royal Society B (London) 231, 437467.

A.M.M. Lelkens & J.J. Koenderink (1984). Illusory motion in visual displays. Vision Research 24, 10831090.

T. Maddess (1986). Afterimage-like effects in the motion-sensitive neuron HI. Proceedings of the Royal Society B (London) 228, 433459.

G.D. Mccann (1973). The fundamental mechanism of motion detection in the insect visual system. Kybernetik 12, 6473.

K. Nakayama (1985). Biological image motion processing: A review. Vision Research 25, 625660.

H. Ögmen & S. Gagne (1990). Neural network architecture for motion perception and elementary motion detection in the fly visual system. Neural Networks 3, 487505.

A. Pantle & L. Picciano (1976). A multistable movement display: Evidence for two separate motion systems in human vision. Science 193, 500502.

T. Quenzer & J.M. Zanker (1991). Visual detection of paradoxical motion in flies. Journal of Comparative Physiology A 169, 331340.

W. Reichardt (1987). Evaluation of optical motion information by movement detectors. Journal of Comparative Physiology A 161, 533547.

A. Riehle & N. Franceschini (1984). Motion detection in flies: Parametric control over ON-OFF pathways. Experimental Brain Research 54, 390394.

T. Sato (1989). Reversed apparent motion with random dot patterns. Vision Research 29, 17491758.

P.H. Schiller (1982). Central connections of the retinal on and off pathways. Nature 297, 580583.

P.H. Schiller , J.H. Sandell & J.H.R. Maunsell (1986). Functions of the on and off channels of the visual system. Nature 322, 824825.

R. Sekuler , S. Anstis , O.J. Braddick , T. Brandt , J.A. Movshon & G. Orban (1990). The perception of motion. In Visual Perception: The Neurophysiological Foundations, ed. L. Spillmann & J.S. Werner , pp. 205230.San Diego, New York, Berkeley, Boston, London, Sydney, Tokyo, Toronto: Academic Press.

S. Shechter & S. Hochstein (1990). On and off pathway contributions to apparent motion perception. Vision Research 30, 11891204.

M.M. Slaughter & R.F. Miller (1981). 2-amino-4-phosphonobutyric acid: A new pharmacological tool for retina research. Science 211, 182184.

G. Sperling (1989). Three stages and two systems of visual processing. Spatial Vision 4, 183207.

A.V. Van Den Berg & W.A. Van De Grind (1990). Motion detection in the presence of local orientation changes. Journal of the Optical Society of America A 7, 933939.

J.P.H. Van Santen & G. Sperling (1984). Temporal covariance model of human motion perception. Journal of the Optical Society of America A 1, 451473.

H. Wässle , B.B. Boycott & R.-B. Illing (1981). Morphology and mosaic of onand off-beta cells in the cat retina and some functional considerations. Proceedings of the Royal Society B (London) 212, 177195.

J.M. Zanker (1990). Theta motion: A new psychophysical paradigm indicating two levels of motion detection. Naturwissenschaften 77, 243246.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *