Skip to main content Accessibility help
×
Home

The effect of threshold on the relationship between the receptive-field profile and the spatial-frequency tuning cure in simple cells of the cat's striate cortex

  • Y. Tadmor (a1) and D. J. Tolhurst (a1)

Abstract

It is believed that spatial summation in most simple cells is a linear process. If this were so, then the Fourier transform of a simple cell's line weighting function should predict the cell's spatial frequency tuning curve. We have compared such predictions with experimental measurements and have found a consistent discrepancy: the predicted tuning curve is much too broad. We show qualitatively that this kind of discrepancy is consistent with the well-known threshold nonlinearity shown by most cortical cells. We have tested quantitatively whether a response threshold could explain the observed disagreements between predictions and measurements: a least-squares minimization routine was used to fit the inverse Fourier Transform of the measured frequency tuning curve to the measured line weighting function. The fitting procedure permitted us to introduce a threshold to the reconstructed line weighting function. The results of the analysis show that, for all of the cells tested, the Fourier transforms produced better predictions when a response threshold was included in the model. For some cells, the actual magnitude of the response threshold was measured independently and found to be compatible with that suggested by the model. The effects of nonlinearities of spatial summation are considered.

Copyright

References

Hide All
Andrews, B.W. & Pollen, D.A. (1979). Relationship between spatial frequency selectivity and receptive-field profile of simple cells. Journal of Physiology 287, 163176.
Campbell, F.W., Cooper, G.F. & Enroth-Cugell, C. (1969). The spatial selectivity of the visual cells of the cat. Journal of Physiology, 203, 223235.
Cooper, G.F. & Robson, J.G. (1968). Successive transformations of spatial information in the visual system. Institute of Electrical Engineers Conference Proceedings 42, 134143.
Dean, A.F. (1981). The variability of discharge of simple cells in the cat striate cortex. Experimental Brain Research 44, 437440.
Dean, A.F. & Tolhurst, D.J. (1983). On the distinctness of simple and complex cells in the visual cortex of the cat. Journal of Physiology 344, 305325.
Dean, A.F. & Tolhurst, D.J. (1986). Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex. Experimental Brain Research 62, 143151.
DeValois, R.L., Albrecht, D.G. & Thorell, L.G. (1978). Cortical cells: bar and edge detectors or spatial-frequency analyzers? In Frontiers in Visual Science, ed. Cool, S.J. & Smith, E.L. pp. 544556. New York: Springer-Verlag.
DeValois, R.L., Thorell, L.G. & Albrecht, D.G. (1985). Periodicity of striate cortex cell receptive fields. Journal of the Optical Society of America A. 2, 11151122.
Field, D.J. & Tolhurst, D.J. (1986). The structure and symmetry of simple cell receptive-field profiles in the cat's visual cortex. Proceedings of the Royal Society B (London) 228, 379400.
Glezer, V.D., Tsherbach, T.A., Gauselman, V.E. & Bondarko, V.M. (1980). Linear and nonlinear properties of simple and complex receptive fields in area 17 of the cat visula cortex. Biological Cybernetics 37, 195208.
Glezer, V.D., Tsherbach, T.A., Gauselman, V.E. & Bondarko, V.M. (1982). Spatio-temporal organization of receptive fields of the cats striate cortex. Biological Cybernetics 43, 3549.
Hubel, D.H. & Weisel, T.N. (1959). Receptive fields of single neurons in the cat's striate cortex. Journal of Physiology 148, 574591.
Hubel, D.H. & Weisel, T.N. (1962). Receptive fields, binocular interaction, and functional architrecture in the cat's visual cortex. Journal of Physiology 160, 106154.
Jones, J.P. & Palmer, L.A. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in the cat striate cortex. Journal of Neurophysiology 58, 12331258.
Kulikowski, J.J. & Bishop, P.O. (1981). Linear analysis of the responses of simple cells in the cat visual cortex. Experimental Brain Research 44, 386400.
Lee, B.B., Elepfandt, A. & Virsu, V. (1981). Phase of responses to sinusoidal gratings of simple cells in cat striate cortex. Journal of Neurophysioligy 45, 818828.
Maffei, L., Morrone, C., Pirchio, M. & Sandini, G. (1979). Responses of visual cortical cells to periodic and nonperiodic stimuli. Journal of Physiology 296, 2747.
Marceija, S. (1980). Mathematical description of the responses of simple cortical cells. Journal of the Optical Society of America 70 12971300.
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978). Spatial summation in the receptive fields of simple cells in the cat's striate cortex. Journal of Physiology 283, 5377.
Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. (1986). Numerical Recipes: the Art Scientific Computing. Cambridge, U.K.: Cambridge University Press.
Schumer, R.A. & Movshon, J.A. (1984). Length summation in simple cells of cat striate cortex. Vision Research 24, 565571.
Tolhurst, D.J. & Dean, A.F. (1987). Spatial summation by simple cells in the striate cortex of the cat. Experimental Brain Research 66, 607620.
Tolhurst, D.J. & Thompson, I.D. (1981). On the variety of spatial-frequency selectivities shown by neurons is area 17 of the cat. Proceedings of the Royal Society B (London) 213, 183199.
Tolhurst, D.J., Movshon, J.A. & Dean, A.F. (1983). The statistical reliability of single neurons in cat and monkey visual cortex. Vision Research 23, 775785.
Tolhurst, D.J., Movshon, J.A. & Thompson, I.D. (1981). The dependence of response amplitude and variance of cat visual cortical neurons on stimulus contrase. Experimental Brian Research, 41, 414419.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed