Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T14:02:37.103Z Has data issue: false hasContentIssue false

Effects of norepinephrine upon superficial layer neurons in the superior colliculus of the hamster: In vitro studies

Published online by Cambridge University Press:  01 May 1999

HONGJING TAN
Affiliation:
Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo
RICHARD D. MOONEY
Affiliation:
Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo
ROBERT W. RHOADES
Affiliation:
Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo

Abstract

Intracellular recording techniques were used to evaluate the effects of norepinephrine (NE) on the membrane properties of superficial layer (stratum griseum superficiale and stratum opticum) superior colliculus (SC) cells. Of the 207 cells tested, 44.4% (N = 92) were hyperpolarized by ≥3 mV and 8.7% (N = 18) were depolarized by ≥3 mV by application of NE. Hyperpolarization induced by NE was dose dependent (EC50 = 8.1 μM) and was associated with decreased input resistance and outward current which had a reversal potential of −94.0 mV. Depolarization was associated with a very slight rise in input resistance and had a reversal potential of −93.1 mV for the single cell tested. Pharmacologic experiments demonstrated that isoproterenol, dobutamine, and p-aminoclonidine all hyperpolarized SC cells. These results are consistent with the conclusion that NE-induced hyperpolarization of SC cells is mediated by both α2 and β1 adrenoceptors. The α1 adrenoceptor agonists, methoxamine and phenylephrine, depolarized 35% (6 of 17) of the SC cells tested by ≥3 mV. Most of the SC cells tested exhibited responses indicative of expression of more than one adrenoceptor. Application of p-aminoclonidine or dobutamine inhibited transsynaptic responses in SC cells evoked by electrical stimulation of optic tract axons. Inhibition of evoked responses by these agents was usually, but not invariably, associated with a hyperpolarization of the cell membrane and a reduction in depolarizing potentials evoked by application of glutamate. The present in vitro results are consistent with those of the companion in vivo study which suggested that NE-induced response suppression in superficial layer SC neurons was primarily postsynaptic and chiefly mediated by both α2 and β1 adrenoceptors.

Type
Research Article
Copyright
1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)