Skip to main content

Encoding of both vertical and horizontal disparity in random-dot stereograms by Wulst neurons of awake barn owls

    • Published online: 01 January 2002

In binocular vision, the lateral displacement of the eyes gives rise to both horizontal and vertical disparities between the images projected onto the left and right retinae. While it is well known that horizontal disparity is exploited by the binocular visual system of birds and mammals to enable depth perception, the role of vertical disparity is still largely unclear. In this study, neuronal activity in the visual forebrain (visual Wulst) of behaving barn owls to vertical disparity was investigated. Single-unit responses to global random-dot stereograms (RDS) were recorded with chronically implanted electrodes and transmitted via radiotelemetry. Nearly half of the cells investigated (44%, 16/36) varied the discharge as a function of vertical disparity. Like horizontal-disparity tuning profiles, vertical-disparity tuning curves typically exhibited periodic modulation with side peaks flanking a prominent main peak, and thus, could be fitted well with a Gabor function. This indicates that tuning to vertical disparity was not caused by disrupting horizontal-disparity tuning via vertical stimulus offset, but by classical disparity detectors whose orientation tuning was tilted. When tested with horizontal in addition to vertical disparity, almost all cells investigated (92%, 12/13) were tuned to both kinds of disparity. The emergence of disparity detectors sensitive in two dimensions (horizontal and vertical) is discussed within the framework of the disparity energy model.

Corresponding author
Address correspondence and reprint requests to: Andreas Nieder, Center for Learning and Memory, Department of Brain and Cognitive Sciences, E25-236, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. E-mail:
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 182 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd July 2018. This data will be updated every 24 hours.