Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 14
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Zolnik, Timothy A. and Connors, Barry W. 2016. Electrical synapses and the development of inhibitory circuits in the thalamus. The Journal of Physiology, Vol. 594, Issue. 10, p. 2579.


    Xu, Z. Zeng, Q. Shi, X. and He, S. 2013. Changing coupling pattern of The ON–OFF direction-selective ganglion cells in early postnatal mouse retina. Neuroscience, Vol. 250, p. 798.


    Bedner, Peter Steinhäuser, Christian and Theis, Martin 2012. Functional redundancy and compensation among members of gap junction protein families?. Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1818, Issue. 8, p. 1971.


    Vuong, H.E. Pérez de Sevilla Müller, L. Hardi, C.N. McMahon, D.G. and Brecha, N.C. 2015. Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines. Neuroscience, Vol. 307, p. 319.


    Kántor, Orsolya Benkő, Zsigmond Énzsöly, Anna Dávid, Csaba Naumann, Angela Nitschke, Roland Szabó, Arnold Pálfi, Emese Orbán, József Nyitrai, Miklós Németh, János Szél, Ágoston Lukáts, Ákos and Völgyi, Béla 2016. Characterization of connexin36 gap junctions in the human outer retina. Brain Structure and Function, Vol. 221, Issue. 6, p. 2963.


    Pereda, Alberto E. Curti, Sebastian Hoge, Gregory Cachope, Roger Flores, Carmen E. and Rash, John E. 2013. Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity. Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1828, Issue. 1, p. 134.


    Meyer, Arndt Tetenborg, Stephan Greb, Helena Segelken, Jasmin Dorgau, Birthe Weiler, Reto Hormuzdi, Sheriar G. Janssen-Bienhold, Ulrike and Dedek, Karin 2016. Connexin30.2: In Vitro Interaction with Connexin36 in HeLa Cells and Expression in AII Amacrine Cells and Intrinsically Photosensitive Ganglion Cells in the Mouse Retina. Frontiers in Molecular Neuroscience, Vol. 9,


    Völgyi, Béla Kovács-Öller, Tamás Atlasz, Tamás Wilhelm, Márta and Gábriel, Róbert 2013. Gap junctional coupling in the vertebrate retina: Variations on one theme?. Progress in Retinal and Eye Research, Vol. 34, p. 1.


    Rodriguez, Allen R. de Sevilla Müller, Luis Pérez and Brecha, Nicholas C. 2014. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. Journal of Comparative Neurology, Vol. 522, Issue. 6, p. 1411.


    Lee, Sammy C.S. Meyer, Arndt Schubert, Timm Hüser, Laura Dedek, Karin and Haverkamp, Silke 2015. Morphology and connectivity of the small bistratified A8 amacrine cell in the mouse retina. Journal of Comparative Neurology, Vol. 523, Issue. 10, p. 1529.


    Eugenin, Eliseo A. Basilio, Daniel Sáez, Juan C. Orellana, Juan A. Raine, Cedric S. Bukauskas, Feliksas Bennett, Michael V. L. and Berman, Joan W. 2012. The Role of Gap Junction Channels During Physiologic and Pathologic Conditions of the Human Central Nervous System. Journal of Neuroimmune Pharmacology, Vol. 7, Issue. 3, p. 499.


    Danesh-Meyer, Helen V. Zhang, Jie Acosta, Monica L. Rupenthal, Ilva D. and Green, Colin R. 2016. Connexin43 in retinal injury and disease. Progress in Retinal and Eye Research, Vol. 51, p. 41.


    Bolte, Petra Herrling, Regina Dorgau, Birthe Schultz, Konrad Feigenspan, Andreas Weiler, Reto Dedek, Karin and Janssen-Bienhold, Ulrike 2016. Expression and Localization of Connexins in the Outer Retina of the Mouse. Journal of Molecular Neuroscience, Vol. 58, Issue. 2, p. 178.


    Memelli, Heraldo Horn, Kyle G. Wittie, Larry D. and Solomon, Irene C. 2012. Analyzing the Effects of Gap Junction Blockade on Neural Synchrony via a Motoneuron Network Computational Model. Computational Intelligence and Neuroscience, Vol. 2012, p. 1.


    ×

Expression and modulation of connexin30.2, a novel gap junction protein in the mouse retina

Abstract
Abstract

Mammalian retinae express multiple connexins that mediate the metabolic and electrical coupling of various cell types. In retinal neurons, only connexin36, connexin45, connexin50, and connexin57 have been described so far. Here, we present an analysis of a novel retinal connexin, connexin30.2 (Cx30.2), and its regulation in the mouse retina. To analyze the expression of Cx30.2, we used a transgenic mouse line in which the coding region of Cx30.2 was replaced by lacZ reporter DNA. We detected the lacZ signal in the nuclei of neurons located in the inner nuclear layer and the ganglion cell layer (GCL). In this study, we focused on the GCL and characterized the morphology of the Cx30.2-expressing cells. Using immunocytochemistry and intracellular dye injections, we found six different types of Cx30.2-expressing ganglion cells: one type of ON-OFF, three types of OFF, and two types of ON ganglion cells; among the latter was the RGA1 type. We show that RGA1 cells were heterologously coupled to numerous displaced amacrine cells. Our results suggest that these gap junction channels may be heterotypic, involving Cx30.2 and a connexin yet unidentified in the mouse retina. Gap junction coupling can be modulated by protein kinases, a process that plays a major role in retinal adaptation. Therefore, we studied the protein kinase–induced modulation of coupling between RGA1 and displaced amacrine cells. Our data provide evidence that coupling of RGA1 cells to displaced amacrine cells is mediated by Cx30.2 and that the extent of this coupling is modulated by protein kinase C.

Copyright
Corresponding author
Address correspondence and reprint requests to: Professor Reto Weiler, Department of Neurobiology, University of Oldenburg, P.O. Box 2503, D-26111 Oldenburg, Germany. E-mail: reto.weiler@uni-oldenburg.de
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

T.D. Badea & J. Nathans (2004). Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. The Journal of Comparative Neurology 480, 331351.

X. Bao , G.A. Altenberg & L. Reuss (2004). Mechanism of regulation of the gap junction protein connexin 43 by protein kinase C-mediated phosphorylation. American Journal of Physiology—Cell Physiology 286, C647C654.

S.A. Bloomfield & B. Völgyi (2009). The diverse functional roles and regulation of neuronal gap junctions in the retina. Nature Reviews Neuroscience 10, 495506.

F.F. Bukauskas , A.B. Angele , V.K. Verselis & M.V. Bennett (2002). Coupling asymmetry of heterotypic connexin 45/connexin 43-EGFP gap junctions: properties of fast and slow gating mechanisms. Proceedings of the National Academy of Sciences of the United States of America 99, 71137118.

F.F. Bukauskas , M.M. Kreuzberg , M. Rackauskas , A. Bukauskiene , M.V. Bennett , V.K. Verselis & K. Willecke (2006). Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: Implications for atrioventricular conduction in the heart. Proceedings of the National Academy of Sciences of the United States of America 103, 97269731.

A.H. Bunt (1976). Ramification patterns of ganglion cells dendrites in the retina of the albino rat. Brain Research 103, 18.

J. Coombs , D. van der List , G.Y. Wang & L.M. Chalupa (2006). Morphological properties of mouse retinal ganglion cells. Neuroscience 140, 123136.

M.R. Deans , B. Volgyi , D.A. Goodenough , S.A. Bloomfield & D.L. Paul (2002). Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36, 703712.

K. Dedek , T. Breuninger , L. Pérez de Sevilla Müller , S. Maxeiner , K. Schultz , U. Janssen-Bienhold , K. Willecke , T. Euler & R. Weiler (2009). A novel type of interplexiform amacrine cell in the mouse retina. European Journal of Neuroscience 30, 217228.

K. Dedek , K. Schultz , M. Pieper , P. Dirks , S. Maxeiner , K. Willecke , R. Weiler & U. Janssen-Bienhold (2006). Localization of heterotypic gap junctions composed of connexin45 and connexin36 in the rod pathway of the mouse retina. European Journal of Neuroscience 24, 16751686.

A. Feigenspan , U. Janssen-Bienhold , S. Hormuzdi , H. Monyer , J. Degen , G. Söhl , K. Willecke , J. Ammermüller & R. Weiler (2004). Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. The Journal of Neuroscience 24, 33253334.

Y. Han & S.C. Massey (2005). Electrical synapses in retinal ON cone bipolar cells: Subtype-specific expression of connexins. Proceedings of the National Academy of Sciences of the United States of America 102, 1331313318.

S. He , R. Weiler & D.I. Vaney (2000). Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina. The Journal of Comparative Neurology 418, 3340.

S. Hidaka , Y. Akahori & Y. Kurosawa (2004). Dendrodendritic electrical synapses between mammalian retinal ganglion cells. The Journal of Neuroscience 24, 1055310567.

S. Hidaka , T. Kato & E. Miyachi (2002). Expression of gap junction connexin36 in adult rat retinal ganglion cells. The Journal of Integrative Neuroscience 1, 322.

S. Hombach , U. Janssen-Bienhold , G. Söhl , T. Schubert , H. Büssow , T. Ott , R. Weiler & K. Willecke (2004). Functional expression of connexin57 in horizontal cells of the mouse retina. European Journal of Neuroscience 19, 26332640.

K.R. Huxlin & A.K. Goodchild (1997). Retinal ganglion cells in the albino rat: Revised morphological classification. The Journal of Comparative Neurology 385, 309323.

U. Janssen-Bienhold , J. Trümpler , G. Hilgen , K. Schultz , L. Pérez de Sevilla Müller , S. Sonntag , K. Dedek , P. Dirks , K. Willecke & R. Weiler (2009). Connexin57 is expressed in dendro-dendritic and axo-axonal gap junctions of mouse horizontal cells and its distribution is modulated by light. Journal of Comparative Neurology 513, 363374.


A.H. Kihara , L.M. de Castro , A.S. Moriscot & D.E. Hamassaki (2006). Prolonged dark adaptation changes connexin expression in the mouse retina. Journal of Neuroscience Research 83, 13311341.

S. Kirchhoff , E. Nelles , A. Hagendorff , O. Krüger , O. Traub & K. Willecke (1998). Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Current Biology 8, 299302.

J.H. Kong , D.R. Fish , R.L. Rockhill & R.H. Masland (2005). Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits. The Journal of Comparative Neurology 489, 293310.

M.M. Kreuzberg , J. Deuchars , E. Weiss , A. Schober , S. Sonntag , K. Wellershaus , A. Draguhn & K. Willecke (2008). Expression of connexin30.2 in interneurons of the central nervous system in the mouse. Molecular and Cellular Neuroscience 37, 119134.

M.M. Kreuzberg , J.W. Schrickel , A. Ghanem , J.S. Kim , J. Degen , U. Janssen-Bienhold , T. Lewalter , K. Tiemann & K. Willecke (2006). Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. Proceedings of the National Academy of Sciences of the United States of America 103, 59595964.

M.M. Kreuzberg , G. Söhl , J.S. Kim , V.K. Verselis , K. Willecke & F.F. Bukauskas (2005). Functional properties of mouse connexin30.2 expressed in the conduction system of the heart. Circulation Research 96, 11691177.

E.J. Lee , J.W. Han , H.J. Kim , I.B. Kim , M.Y. Lee , S.J. Oh , J.W. Chung & M.H. Chun (2003). The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. European Journal of Neuroscience 18, 29252934.

X. Li , N. Kamasawa , C. Ciolofan , C.O. Olson , S. Lu , K.G. Davidson , T. Yasumura , R. Shigemoto , J.E. Rash & J.I. Nagy (2008). Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bihomotypic gap junctions, with scaffolding contributed by zonula occludens-1. The Journal of Neuroscience 28, 97699789.

B. Lin , T.C. Jakobs & R.H. Masland (2005). Different functional types of bipolar cells use different gap-junctional proteins. The Journal of Neuroscience 25, 66966701.

B. Lin & R.H. Masland (2006). Populations of wide-field amacrine cells in the mouse retina. The Journal of Comparative Neurology 499, 797809.

D. Matesic , T. Tillen & A. Sitaramayya (2003). Cx40 expression in bovine and rat retinae. Cell Biology International 27, 8999.

S. Maxeiner , K. Dedek , U. Janssen-Bienhold , J. Ammermüller , H. Brune , T. Kirsch , M. Pieper , J. Degen , O. Krüger , K. Willecke & R. Weiler (2005). Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. The Journal of Neuroscience 25, 566576.

S.L. Mills , J.J. O’Brien , W. Li , J. O’Brien & S.C. Massey (2001). Rod pathways in the mammalian retina use connexin 36. The Journal of Comparative Neurology 436, 336350.

A.P. Moreno & A.F. Lau (2007). Gap junction channel gating modulated through protein phosphorylation. Progress in Biophysics and Molecular Biology 94, 107119.

S. Nirenberg & M. Meister (1997). The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron 18, 637650.

J.J. O’Brien , W. Li , F. Pan , J. Keung , J. O’Brien & S.C. Massey (2006). Coupling between A-type horizontal cells is mediated by connexin 50 gap junctions in the rabbit retina. The Journal of Neuroscience 26, 1162411636.

F. Pan , D.L. Paul , S.A. Bloomfield & B. Völgyi (2010). Connexin36 is required for gap junctional coupling of most ganglion cell subtypes in the mouse retina. The Journal of Comparative Neurology 518, 911927.

L. Pérez de Sevilla Müller , J. Shelley & R. Weiler (2007). Displaced amacrine cells of the mouse retina. The Journal of Comparative Neurology 505, 177189.

M. Rackauskas , V.K. Verselis & F.F. Bukauskas (2007). Permeability of homotypic and heterotypic gap junction channels formed of cardiac connexins mCx30.2, Cx40, Cx43, and Cx45. American Journal of Physiology. Heart and Circulatory Physiology 293, H1729H1736.

T. Schubert , J. Degen , K. Willecke , S.G. Hormuzdi , H. Monyer & R. Weiler (2005 a). Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. The Journal of Comparative Neurology 485, 191201.

T. Schubert , S. Maxeiner , O. Kruger , K. Willecke & R. Weiler (2005 b). Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina. The Journal of Comparative Neurology 490, 2939.

J. Shelley , K. Dedek , T. Schubert , A. Feigenspan , K. Schultz , S. Hombach , K. Willecke & R. Weiler (2006). Horizontal cell receptive fields are reduced in connexin57-deficient mice. European Journal of Neuroscience 23, 31763186.

A.M. Simon & A.R. McWhorter (2003). Decreased intercellular dye-transfer and downregulation of non-ablated connexins in aortic endothelium deficient in connexin37 or connexin40. Journal of Cell Science 116, 22232236.

G. Söhl , J. Degen , B. Teubner & K. Willecke (1998). The murine gap junction gene connexin36 is highly expressed in mouse retina and regulated during brain development. FEBS Letters 428, 2731.

G. Söhl , S. Maxeiner & K. Willecke (2005). Expression and functions of neuronal gap junctions. Nature Reviews Neuroscience 6, 191200.

D.C. Spray , Z.C. Ye & B.R. Ransom (2006) Functional connexin “hemichannels”: a critical appraisal. Glia 54, 758773.

W. Sun , N. Li & S. He (2002 a). Large-scale morphological survey of mouse retinal ganglion cells. The Journal of Comparative Neurology 451, 115126.


S. Urschel , T. Höher , T. Schubert , C. Alev , G. Söhl , P. Wörsdörfer , T. Asahara , R. Dermietzel , R. Weiler & K. Willecke (2006). Protein kinase A-mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. Journal of Biological Chemistry 281, 3316333171.

D.I. Vaney (1991). Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neuroscience Letters 125, 187190.

B. Völgyi , J. Abrams , D.L. Paul & S.A. Bloomfield (2005). Morphology and tracer coupling pattern of alpha ganglion cells in the mouse retina. The Journal of Comparative Neurology 492, 6677.

B. Völgyi , S. Cheda & S.A. Bloomfield (2009). Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. The Journal of Comparative Neurology 512, 664687.

R. Weiler , M. Pottek , S. He & D.I. Vaney (2000). Modulation of coupling between retinal horizontal cells by retinoic acid and endogenous dopamine. Brain Research Reviews 32, 121129.

S. Weng , W. Sun & S. He (2005). Identification of ON-OFF direction-selective ganglion cells in the mouse retina. The Journal of Physiology 562, 915923.

L.L. Wright & D.I. Vaney (2000). The fountain amacrine cells of the rabbit retina. Visual Neuroscience 17, 11451156.



D. Xin & S.A. Bloomfield (1997). Tracer coupling pattern of amacrine and ganglion cells in the rabbit retina. The Journal of Comparative Neurology 383, 512528.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: