Skip to main content
×
×
Home

Eye evolution and its functional basis

  • DAN-E. NILSSON (a1)
Abstract

Eye evolution is driven by the evolution of visually guided behavior. Accumulation of gradually more demanding behaviors have continuously increased the performance requirements on the photoreceptor organs. Starting with nondirectional photoreception, I argue for an evolutionary sequence continuing with directional photoreception, low-resolution vision, and finally, high-resolution vision. Calculations of the physical requirements for these four sensory tasks show that they correlate with major innovations in eye evolution and thus work as a relevant classification for a functional analysis of eye evolution. Together with existing molecular and morphological data, the functional analysis suggests that urbilateria had a simple set of rhabdomeric and ciliary receptors used for directional photoreception, and that organ duplications, positional shifts and functional shifts account for the diverse patterns of eyes and photoreceptors seen in extant animals. The analysis also suggests that directional photoreception evolved independently at least twice before the last common ancestor of bilateria and proceeded several times independently to true vision in different bilaterian and cnidarian groups. This scenario is compatible with Pax-gene expression in eye development in the different animal groups. The whole process from the first opsin to high-resolution vision took about 170 million years and was largely completed by the onset of the Cambrian, about 530 million years ago. Evolution from shadow detectors to multiple directional photoreceptors has further led to secondary cases of eye evolution in bivalves, fan worms, and chitons.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Eye evolution and its functional basis
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Eye evolution and its functional basis
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Eye evolution and its functional basis
      Available formats
      ×
Copyright
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.
Corresponding author
*Address correspondence to: Dan-E. Nilsson, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden. E-mail: dan-e.nilsson@biol.lu.se
References
Hide All
Adal, M.N. & Morton, B. (1973). The fine structure of the pallial eyes of Laternula truncata (Bivalvia: Anomalodesmata: Pandoracea). The Journal of Zoology 171, 533556.
Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. (2001). Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819822.
Arendt, D. (2008). The evolution of cell types in animals: Emerging principles from molecular studies. Nature Reviews Genetics 9, 868882.
Arendt, D., Hausen, H. & Purschke, G. (2009). The ‘division of labour’ model of eye evolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 28092817.
Arendt, D., Tessmar-Raible, K., Snyman, H., Dorresteijn, A.W. & Wittbrodt, J. (2004). Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306, 869871.
Arendt, D. & Wittbrodt, J. (2001). Reconstructing the eyes of Urbilateria. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 356, 15451563.
Atick, J.J. (1992). Could information theory provide an ecological theory of sensory processing? Network 3, 213251.
Backfisch, B., Rajan, V.B.V., Fisher, R.M., Lohs, C., Arboleda, E., Tessmar-Raible, K. & Raible, F. (2013). Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. Proceedings of the National Academy of Sciences of the United States of America 110, 193198.
Barber, V.C., Evans, E.M. & Land, M.F. (1967). The fine structure of the eye of the mollusc Pecten maximus. Zeitschrift für Vergleichende Anatomie 76, 295312.
Barber, V.C. & Land, M.F. (1967). Eye of the cockle, Cardium edule: Anatomical and physiological investigations. Experientia 23, 677678.
Bennett, M.F. (1979). Extraocular light receptors and circadian rhythms. In Handbook of Sensory Phyiology, Vol. VII/6A, ed. Autrum, H., pp. 641663. Berlin: Springer.
Blest, A.D. (1985). The fine structure of spider photoreceptors in relation to function. In Neurobiology of Arachnids, ed. Barth, F.G., pp. 79102. Berlin: Springer.
Blevins, E. & Johnsen, S. (2004). Spatial vision in the echinoid genus Echinometra. Journal of Experimental Biology 207, 42494253.
Blumer, M. (1994). The ultrastructure of the eyes in the veliger-larvae of Aporrhais sp. and Bittium reticulatum (Mollusca, Caenogastropoda). Zoomorphology 114, 149159.
Blumer, M. (1995). The ciliary photoreceptor in the teleplanic veliger larvae of Smaragdia sp. and Strombus sp. (Mollusca, Gastropoda). Zoomorphology 115, 7381.
Blumer, M. (1996). Alterations of the eyes during ontogenesis in Aporrhais pespelecani (Mollusca, Caenogastropoda). Zoomorphology 116, 123131.
Caddy, J.F. (1968). Underwater observations on scallop (Placopecten magellanicus) behaviour and drag efficiency. Journal of the Fisheries Research Board of Canada 25, 21232141.
Eakin, R.M. (1963). Lines of evolution of photoreceptors. In General Physiology of Cell Specialization, eds. Mazia, D. & Tyler, A., pp. 293425. New York: McGraw-Hill Book Co.
Eakin, R.M. (1972). Structure in invertebrate photoreceptors. In Handbook of Sensory Physiology, Vol. 7, ed. Autrum, H., pp. 625684. Berlin: Springer.
Eakin, R.M. & Brandenberger, J.L. (1981). Unique eye of probable evolutionary significance. Science 211, 11891190.
Eakin, R.M. & Westfall, J.A. (1965). Ultrastructure of the eye of the rotifer Asplanchna brightwelli. Journal of Ultrastructural Research 12, 4662.
Elofsson, R. (2006). The frontal eyes of crustaceans. Arthropod Structure and Development 35, 275291.
Endler, J.A. (1992). Signals, signal conditions, and the direction of evolution. The American Naturalist 139, s125s153.
Erwin, D.H., Laflamme, M., Tweedt, S.M., Sperling, E.A., Pisani, D. & Peterson, K.J. (2011). The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science 334, 10911097.
Fain, G.L., Hardie, R. & Laughlin, S.B. (2010) Phototransduction and the evolution of photoreceptors. Current Biology 20, R114R124.
Feuda, R., Hamilton, S.C.McInerney, J.O. & Pisani, D. (2012). Metazoan opsin evolution reveals a simple route to animal vision. Proceedings of the National Academy of Sciences of the United States of America 109, 1886818872.
Fredriksson, R., Lagertström, M.C., Lundin, L-G. & Schiöth, H.B. (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology 63, 12561272.
Gehring, W.J. (2005). New perspectives on eye development and the evolution of eyes and photoreceptors. The Journal of Heredity 96, 171184.
Gehring, W.J. (2011). Chance and necessity in eye evolution. Genome Biology and Evolution 3, 10531066.
Gehring, W.J. & Ikeo, K. (1999). Pax 6: Mastering eye morphogenesis and eye evolution. Trends in Genetics 15, 371377.
Goldsmith, T.H. (2013). Evolutionary tinkering with visual photoreception. Visual Neuroscience 30, 12, 27–29. doi: 10.1017/S095252381200003X.
Gotow, T. & Nishi, T. (2007). Involvement of a Go-type G-protein coupled to guanylate cyclase in the phototransduction cGMP cascade of molluscan simple photoreceptors. Brain Research 1144, 4251.
Gotow, T. & Nishi, T. (2008). Simple photoreceptors in some invertebrates: Physiological properties of a new photosensory modality. Brain Research 1225, 316.
Hardeland, R., Balzer, I., Poeggeler, B., Fuhrberg, B., Uria, H., Behrmann, G., Wolf, R., Meyer, T.J. & Reiter, R.J. (1995). On the primary functions of melatonin in evolution: Mediation of photoperiodic signals in a unicell, photooxidation, and scavenging of free radicals. Journal of Pineal Research 18, 104111.
Hejnol, A. & Martindale, M.Q. (2008). Acoel development supports a simple planula-like urbilaterian. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363, 14931501.
Jékely, G., Colombelli, J., Hausen, H., Guy, K., Stelzer, E., Nedelec, F. & Arendt, D. (2008). Mechanism of phototaxis in marine zooplankton. Nature 456, 395399.
Kojima, D., Terakita, A., Ishikawa, T., Tsukahara, Y., Maeda, A. & Shichida, Y. (1997). A novel go-mediated phototransduction cascade in scallop visual cells. Journal of Biological Chemistry 272, 2297922982.
Kozmik, Z., Ruzickova, J., Jonasova, K., Matsumoto, Y., Vopalensky, P., Kozmikova, I., Strnad, H., Kawamura, S., Piatigorsky, J., Paces, V. & Vlcek, C. (2008). Assembly of the cnidarian cameratype eye from vertebrate-like components. Proceedings of the National Academy of Sciences of the United States of America 105, 89898993.
Kusakabe, T., Kusakabe, R., Kawakami, I., Satou, Y., Satoh, N. & Tsuda, M. (2001). Ci-opsin1, a vertebrate-type opsin gene, expressed in the larval ocellus of the ascidian Ciona intestinalis. FEBS Letters 506, 6972.
Kusakabe, T.G., Takimoto, N., Jin, M. & Tsuda, M. (2009). Evolution and the origin of the visual retinoid cycle in vertebrates. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 28972910.
Lacalli, T. (2004). Sensory systems in amphioxus: A window on the ancestral chordate condition. Brain Behaviour and Evolution 64, 148162.
Lamb, T.D., Collin, S.P. & Pugh, E.N. Jr. (2007). Evolution of the vertebrate eye: Opsins, photoreceptors, retina and eye cup. Nature Reviews Neuroscience 8, 960975.
Land, M.F. (1965). Image formation by a concave reflector in the eye of the scallop, Pecten maximus. The Journal of Physiology 179, 138153.
Land, M.F. (1966). Activity in the optic nerve of Pecten maximus in response to changes in light intensity and to pattern and movement in the optical environment. The Journal of Experimental Biology 45, 8399.
Land, M.F. (1981). Optics and vision in invertebrates. In Handbook of Sensory Physiology, Vol. VII/6B, ed. Autrum, H., pp. 471592. Berlin: Springer.
Land, M.F. (1985). The morphology and optics of spider eyes. In Neurobiology of Arachnids, ed. Barth, F.G., pp. 5378. Berlin: Springer.
Land, M.F. (2003). The spatial resolution of the pinhole eyes of giant clams (Tridacna maxima). Proceedings of the Royal Society of London. Series B, Biological Sciences 270, 185188.
Land, M.F. & Nilsson, D-E. (2006). General purpose and special purpose visual systems. In Invertebrate Vision, eds. Warrant, E.J. & Nilsson, D-E., pp. 167210. Cambridge, UK: Cambridge University Press.
Land, M.F. & Nilsson, D-E. (2012). Animal Eyes. Oxford: Oxford University Press.
Leech, D.M., Padeletti, A. & Williamson, C.E. (2005). Zooplankton behavioral responses to solar UV radiation vary within and among lakes. Journal of Plankton Research 27, 461471.
Lesser, M.P., Carleton, K.L., Böttger, S.A., Barry, T.M. & Walker, C.W. (2011). Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6. Proceedings of the Royal Society of London. Series B, Biological Sciences 278, 33713379.
Lythgoe, N.J. (1979). The Ecology of Vision. Oxford: Oxford University Press.
Mason, B., Schmale, M., Gibbs, P., Miller, M.W., Wang, Q., Levay, K., Shestopalov, V. & Slepak, V.Z. (2012). Evidence for multiple phototransduction pathways in a reef-building coral. PLoS One 7, e50371.
McGraw, K.J. (2005). The antioxidant function of many animal pigments: Are there consistent health benefits of sexually selected colourants? Animal Behaviour 69, 757764.
Meredith, P. & Riesz, J. (2004). Radiative relaxation quantum yields for synthetic eumelanin. Photochemistry and Photobiology 79, 211216.
Needham, A.E. (1974). The Significance of Zoochromes. Berlin: Springer.
Nilsson, D-E. (1990). From cornea to retinal image in invertebrate eyes. Trends in Neurosciences 13, 5564.
Nilsson, D-E. (1994). Eyes as optical alarm systems in fan worms and ark clams. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 346, 195212.
Nilsson, D-E. (2009). The evolution of eyes and visually guided behaviour. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 28332847.
Nilsson, D-E., Gislén, L., Coates, M.M., Skogh, C. & Garm, A. (2005). Advanced optics in a jellyfish eye. Nature 435, 201205.
Nordström, K., Wallen, R., Seymour, J. & Nilsson, D-E. (2003). A simple visual system without neurons in jellyfish larvae. Proceedings of the Royal Society of London. Series B, Biological Sciences 270, 23492354.
Oakley, T.H. (2003). The eye as a replicating and diverging, modular developmental unit. Trends in Ecology and Evolution 18, 623627.
O’Connor, M., Garm, A. & Nilsson, D-E. (2009). Structure and optics of the eyes of the box jellyfish Chiropsella bronzie. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology 195, 557569.
Passamaneck, Y.J., Furchheim, N., Hejnol, A., Martindale, M.Q. & Lüter, C. (2011). Ciliary photoreceptors in the cerebral eyes of a protostome larva. EvoDevo 2, 217.
Paterson, J.R., Garcia-Bellido, D.C., Lee, M.S.Y., Brock, G.A., Jago, J.B. & Edgecombe, G.D. (2011). Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature 480, 237240.
Paul, N.D. & Gwynn-Jones, D. (2003). Ecological roles of solar UV radiation: Towards an integrated approach. Trends in Ecology and Evolution 18, 4855.
Peirson, S.N., Halford, S. & Foster, R.G. (2009). The evolution of irradiance detection: Melanopsin and the non-visual opsins. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 28482865.
Penn, P.E. & Alexander, C.G. (1980). Fine structure of the optic cusion in the asteroid Nepanthia belcheri. Marine Biology 58, 251256.
Peterson, K.J., Cotton, J.A., Gehling, J.G. & Pisani, D. (2008). The Ediacaran emergence of bilaterians: Congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363, 14351443.
Philippe, H., Brinkmann, H., Martinez, P., Riutort, M. & Baguna, J. (2007). Acoel flatworms are not platyhelminthes: Evidence from phylogenomics. PLoS One 2, e717.
Philippe, H, Derelle, R, Lopez, P, Pick, K, Borchiellini, C., Boury-Esnault, N., Vacelet, J., Renard, E., Houliston, E., Quéinnec, E., Da Silva, C., Wincker, P., Le Guyader, H., Leys, S., Jackson, D.J., Schreiber, F., Erpenbeck, D., Morgenstern, B., Wörheide, G. & Manuel, M. (2009). Phylogenomics revives traditional views on deep animal relationships. Current Biology 19, 706712.
Plachetzki, D.C., Degnan, B.M. & Oakley, T.H. (2007). The origins of novel protein interactions during animal opsin evolution. PLoS One 2, e1054.
Plachetzki, D.C., Fong, C.T. & Oakley, T.H. (2010). The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proceedings of the Royal Society of London. Series B, Biological Sciences 277, 19631969.
Plachetzki, D.C., Fong, C.T. & Oakley, T.H. (2012). Cnidocyte discharge is regulated by light and opsin-mediated phototransduction. BMC Biology 10, 17.
Porter, M.L., Blasic, J.R., Bok, M.J., Cameron, E.G. & Pringle, T. (2011). Shedding new light on opsin evolution. Proceedings of the Royal Society of London. Series B, Biological Sciences 279, 314.
Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P. & Rollag, M.D. (1998). Melanopsin: An opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences of the United States of America 95, 340345.
Raff, R.A. (2008). Origins of the other metazoan body plans: The evolution of larval forms. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363, 14731479.
Raible, F., Tessmar-Raible, K., Arboleda, E., Kaller, T., Bork, P., Arendt, D. & Arnone, M.I. (2006). Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Developmental Biology 300, 461475.
Ramirez, M.D., Speiser, D.I., Pankey, M.S. & Oakley, T.H. (2011). Understanding the dermal light sense in the context of integrative photoreceptor cell biology. Visual Neuroscience 28, 265279.
Salvini-Plawen, L.V. & Mayr, E. (1977). On the evolution of photo-receptors and eyes. Evolutionary Biology 10, 207263.
Schnitzler, C.E., Pang, K., Powers, M.L., Reitzel, A.M., Ryan, J.F., Simmons, D., Tada, T., Park, M., Gupta, J., Brooks, S.Y., Blakesley, R.W., Yokoyama, S., Haddock, S.H.D., Martindale, M.Q. & Baxevanis, A.D. (2012). Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: A new view of ctenophore photocytes. BMC Biology 10, 107, 126. doi:10.1186/1741-7007-10-107.
Seyer, J-O. (1992). Resolution and sensitivity in the eye of the winkle littorina littorea. The Journal of Experimental Biology 170, 5769.
Seyer, J-O. (1994). Structure and optics of the eye of the hawk-wing conch, Strombus raninus (L.). Journal of Experimental Zoology 268, 200207.
Simpson, G.G. (1944). Tempo and Mode in Evolution. New York: Columbia University Press.
Snyder, A.W. (1979). Physics of vision in compound eyes. In Handbook of Sensory Physiology, Vol. VII/6A, ed. Autrum, H., pp. 225313. Berlin: Springer.
Solessio, E. & Engbretson, G.A. (1993). Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards. Nature 364, 442445.
Speiser, D.I., Eernisse, D.J. & Johnsen, S. (2011). A chiton uses aragonite lenses to form images. Current Biology 21, 665670.
Speiser, D.I. & Johnsen, S. (2008). Comparative morphology of the concave mirror eyes of scallops (Pectinoidea). American Malacological Bulletin 26, 2733.
Srinivasan, M.V., Laughlin, S.B. & Dubs, A. (1982). Predictive coding: A fresh view of inhibition in the retina. Proceedings of the Royal Society of London. Series B, Biological Sciences 216, 427459.
Srinivasan, M.V. & Zhang, S. (2004). Visual motor computations in insects. Annual Review of Neuroscience 27, 679696.
Su, C-Y., Luo, D-G., Terakita, A., Shichida, Y., Liao, H-W., Kazmi, M.A., Sakmar, T.P. & Yau, K.-W. (2006). Parietal-eye phototransduction components and their potential evolutionary implications. Science 311, 16171621.
Suga, H., Schmid, V. & Gehring, W.J. (2008). Evolution and functional diversity of jellyfish opsins. Current Biology 18, 5155.
Suga, H., Tschoppa, P., Graziussia, D.F., Stierwaldb, M., Schmid, V., & Gehring, W.J. (2010). Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish. Proceedings of the National Academy of Sciences of the United States of America 107, 1426314268.
Theobald, J.C., Ringach, D.L. & Frye, M.A. (2009). Visual stabilization dynamics are enhanced by standing flight velocity. Biology Letters 6, 410413.
Tong, D., Rozas, N.S., Oakley, T.H., Mitchell, J., Colley, N.J. & McFall-Ngai, M.J. (2009). Evidence for light perception in a bioluminescent organ. Proceedings of the National Academy of Sciences of the United States of America 106, 98369841.
Ullrich-Lüter, E.M., Dupont, S., Arboleda, E., Hausen, H. & Arnone, M.I. (2011). Unique system of photoreceptors in sea urchin tube feet. Proceedings of the National Academy of Sciences of the United States of America 108, 83678372.
Vanfleteren, J.R. (1982). A monophyletic line of evolution? Ciliary induced photoreceptor membranes. In Visual Cells in Evolution, ed. Westfall, J.A., pp. 107136. New York, NY: Raven Press.
Vanfleteren, J.R. & Coomans, A. (1976). Photoreceptor evolution and phylogeny. Journal of Zoological Systematics and Evolutionary Research 14, 157168.
Velarde, R.A., Sauer, C.D., Walden, K.K.O., Fahrbach, S.E. & Robertson, H.M. (2005). Pteropsin: A vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochemistry and Molecular Biology 35, 13671377.
Vopalensky, P. & Kozmik, Z. (2009). Eye evolution: common use and independent recruitment of genetic components. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 28192832.
Vopalensky, P., Pergner, J., Liegertova, M., Benito-Gutierrez, E., Arendt, D. & Kozmik, Z. (2012). Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye. Proceedings of the National Academy of Sciences of the United States of America 109, 1538315388.
Warrant, E.J. (1999). Seeing better at night: Life style, eye design and the optimum strategy of spatial and temporal summation. Vision Research 39, 16111630.
Warrant, E.J. & Nilsson, D-E. (1998). Absorption of white light in photoreceptors. Vision Research 38, 195207.
Yamasu, T. (1991). Fine structure and function of ocelli and sagittocysts of acoel flatworms. Hydrobiologia 227, 273282.
Yerramilli, D. & Johnsen, S. (2009). Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea). The Journal of Experimental Biology 213, 249255.
Yoshida, M. & Ohtsuki, H. (1968). The phototactic behaviour of the starfish, Asterias amurensis Lutken. Biological Bulletin 134, 516532.
Young, R.W. (1971). The renewal of rod and cone outer segments in the Rhesus monkey. The Journal of Cell Biology 49, 303318.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 89
Total number of PDF views: 1163 *
Loading metrics...

Abstract views

Total abstract views: 1812 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st July 2018. This data will be updated every 24 hours.