Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T06:15:36.428Z Has data issue: false hasContentIssue false

Foveal evoked magneto-encephalography features related to the parvocellular pathway

Published online by Cambridge University Press:  28 April 2008

CHIA-YEN YANG
Affiliation:
Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, Republic of China
JEN-CHUEN HSIEH
Affiliation:
Institute of Health Informatics and Decision Making, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China Laboratory of Integrated Brain Research, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
YIN CHANG*
Affiliation:
Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, Republic of China
*
Address correspondence and reprint requests to: Yin Chang, Institute of Biomedical Engineering, National Yang-Ming University, 155 Section 2 Li-Nong Street, Shih-Pai, Peitou, Taipei 112, Taiwan, Republic of China. E-mail: ychang@bme.ym.edu.tw

Abstract

The aim of this study was to use non-invasive magneto-encephalographic techniques, together with visual stimulus paradigms that can psychophysically separate the M- and P-pathways, to examine the physiological relations of the pathways at the fovea with (1) the magneto-encephalography components M70 and M100 (in latency and amplitude), and (2) the cortical oscillatory activities (alpha, beta, and gamma), respectively. The checkerboard stimuli accompanied with different spatial frequencies (SFs) (0.5 or 4 cycles per degree) were presented (within 2° of the retinal center) to six healthy subjects by using steady-pedestal and pulse paradigms, which could activate distinct populations of M- and P-neurons. SF analyzed brain responses in each paradigm. The results show a consistent trend in M70 and M100 with increased latencies and amplitudes in response to the high SF. Mean while, the beta to gamma activities are apparently enhanced by the stimulus of high SF, especially under pulse paradigm (p = 0.03). In this study, we suggest that M70 can be a good clue to characterize the P-pathway. Moreover, in the frequency analysis, the beta oscillations may serve for more detailed visual information, while the gamma oscillations seem to reflect the signal processing in the P-pathway and with sensitivity to the fovea.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adeli, H., Zhou, Z. & Dadmehr, N. (2003). Analysis of EEG records in an epileptic patient using wavelet transform. Journal of Neuroscience Methods 123, 6987.CrossRefGoogle Scholar
Arakawa, K., Tobimatsu, S., Kato, M. & Kira, J.I. (1999). Parvocellular and magnocellular visual processing in spinocerebellar degeneration and Parkinson's disease: An event-related potential study. Clinical Neurophysiology 110, 10481057.CrossRefGoogle ScholarPubMed
Basar, E., Schürmann, M., Demiralp, T., Basar-Eroglu, C. & Ademoglu, A. (2001). Event-related oscillations are ‘real brain responses’—wavelet analysis and new strategies. International Journal of Psychophysiology 39, 91127.CrossRefGoogle ScholarPubMed
Baseler, H.A. & Sutter, E.E. (1997). M and P components of the VEP and their visual field distribution. Vision Research 37, 675690.CrossRefGoogle ScholarPubMed
Bear, M.F., Connors, B.W. & Paradiso, M.A. (2001). Neuroscience: Exploring the Brain. Baltimore, MD: Lippincott Williams and Wilkins.Google Scholar
Dacey, D. (1993). The mosaic of midget ganglion cells in the human retina. Journal of Neuroscience 13, 53345355.CrossRefGoogle ScholarPubMed
Eckhorn, R., Frien, A., Bauer, R., Woelbern, T. & Kehr, H. (1993). High frequency (60–90 Hz) oscillations in primary visual cortex of awake monkey. Neuroreport 4, 243246.CrossRefGoogle ScholarPubMed
Jones, D.C. & Blume, W.T. (2000). Pattern-evoked potential latencies from central and peripheral visual fields. Journal of Clinical Neurophysiology 17, 6876.CrossRefGoogle ScholarPubMed
Karakas, S., Basar-Eroglu, C., Ozesmi, C., Kafadar, H. & Erzengin, O.U. (2001). Gamma response of the brain: A multifunctional oscillation that represents bottom-up with top-down processing. International Journal of Psychophysiology 39, 137150.CrossRefGoogle Scholar
Kenemans, J.L., Baas, J.M.P., Mangun, G.R., Lijffijt, M. & Verbaten, M.N. (2000). On the processing of spatial frequencies as revealed by evoked-potential source modeling. Clinical Neurophysiology 111, 11131123.CrossRefGoogle ScholarPubMed
Kronland-Martinet, R., Morlet, J. & Grossmann, A. (1987). Analysis of sound patterns through wavelet transforms. International Journal of Pattern Recognition and Artificial Intelligence 1, 273302.CrossRefGoogle Scholar
Kruse, W. & Eckhorn, R. (1996). Inhibition of sustained gamma oscillations (35–80 Hz) by fast transient responses in cat visual cortex. Proceedings of the National Academy of Sciences USA 93, 61126117.CrossRefGoogle ScholarPubMed
Lee, K.H., Williams, L.M., Breakspear, M. & Gordon, E. (2003). Synchronous gamma activity: A review and contribution to an integrative neuroscience model of schizophrenia. Brain Research Reviews 41, 5778.CrossRefGoogle Scholar
Leonova, A., Pokorny, J. & Smith, V.C. (2003). Spatial frequency processing in inferred PC- and MC-pathways. Vision Research 43, 21332139.CrossRefGoogle ScholarPubMed
Merigan, W.H., Nealey, T.A. & Maunsell, J.H.R. (1993). Visual effects of lesions of cortical area V2 in macaques. Journal of Neuroscience 13, 31803191.CrossRefGoogle ScholarPubMed
Odaka, K., Imada, T., Mashiko, T. & Hayashi, M. (1996). Discrepancy between brain magnetic fields elicited by pattern and luminance stimulations in the fovea: Adequate stimulus positions and a measure of discrepancy. Brain Topography 8, 309316.CrossRefGoogle Scholar
Plainis, S. & Murray, I.J. (2005). Magnocellular channel subserves the human contrast-sensitivity function. Perception 34, 933940.CrossRefGoogle ScholarPubMed
Pokorny, J. & Smith, V.C. (1997). Psychophysical signatures associated with magnocellular and parvocellular pathway contrast gain. Journal of the Optical Society of America A: Optics, Image Science, and Vision 14, 24772486.CrossRefGoogle ScholarPubMed
Proverbio, A.M., Zani, A. & Avella, C. (1996). Differential activation of multiple current sources of foveal VEPs as a function of spatial frequency. Brain Topography 9, 5968.CrossRefGoogle Scholar
Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., LaMantia, A.S., McNamara, J.O. & Williams, S.M. (2001). Neuroscience. Sunderland, MA: Sinauer Associates.Google Scholar
Quiroga, R.Q. & Schürmann, M. (1999). Functions and sources of event-related EEG alpha oscillations studied with the Wavelet Transform. Clinical Neurophysiology 110, 643654.CrossRefGoogle ScholarPubMed
Reed, J.L., Marx, M.S. & May, J.G. (1984). Spatial frequency tuning in the visual evoked potential elicited by sine-wave gratings. Vision Research 24, 10571062.CrossRefGoogle ScholarPubMed
Sakowitz, O.W., Quiroga, R.Q., Schürmann, M. & Basar, E. (2001). Bisensory stimulation increases gamma-responses over multiple cortical regions. Cognitive Brain Research 11, 267279.CrossRefGoogle ScholarPubMed
Samar, V.J., Bopardikar, A., Rao, R. & Swartz, K. (1999). Wavelet analysis of neuroelectric waveforms: A conceptual tutorial. Brain and Language 66, 760.CrossRefGoogle ScholarPubMed
Schiller, P.H., Logothetis, N.K. & Charles, E.R. (1991). Parallel pathways in the visual system: Their role in perception at isoluminance. Neuropsychologia 29, 433441.CrossRefGoogle ScholarPubMed
Schürmann, M. & Basar, E. (1994). Topography of alpha and theta oscillatory responses upon auditory and visual stimuli in humans. Biological Cybernetics 72, 161174.CrossRefGoogle ScholarPubMed
Schwartz, S.H. (1999). Visual Perception: A Clinical Orientation. New York: McGraw-Hill.Google Scholar
Tallon-Baudry, C. (2003). Oscillatory synchrony and human visual cognition. Journal of Physiology (Paris) 97, 355363.CrossRefGoogle ScholarPubMed
Tallon-Baudry, C. & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Science 3, 151162.CrossRefGoogle ScholarPubMed
Taulu, S., Simola, J. & Kajola, M. (2005). Applications of the signal space separation method. IEEE Transactions on Signal Processing 53, 33593372.CrossRefGoogle Scholar
Tobimatsu, S., Tomoda, H. & Kato, M. (1995). Parvocellular and magnocellular contributions to visual evoked potentials in humans: Stimulation with chromatic and achromatic gratings and apparent motion. Journal of the Neurological Sciences 134, 7382.CrossRefGoogle ScholarPubMed
Tzelepi, A., Bezerianos, T. & Bodis-Wollner, I. (2000). Functional properties of sub-bands of oscillatory brain waves to pattern visual stimulation in man. Clinical Neurophysiology 111, 259269.CrossRefGoogle ScholarPubMed
Tzelepi, A., Ioannides, A.A. & Poghosyan, V. (2001). Early (N70m) neuromagnetic signal topography and striate and extrastriate generators following pattern onset quadrant stimulation. NeuroImage 13, 702718.CrossRefGoogle ScholarPubMed
Varela, F., Lachaux, J.P., Rodriguez, E. & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience 2, 229239.CrossRefGoogle ScholarPubMed
Wilson, H.R. (1978). Quantitative characterization of two types of line-spread function near the fovea. Vision Research 18, 971981.CrossRefGoogle ScholarPubMed
Wilson, H.R., McFarlane, D.K. & Phillips, G.C. (1983). Spatial frequency tuning of orientation selective units estimated by oblique masking. Vision Research 23, 873882.CrossRefGoogle ScholarPubMed
Yang, C.Y., Hsieh, J.C. & Chang, Y. (2006). An MEG study into the visual perception of apparent motion in depth. Neuroscience letters 403, 4045.CrossRefGoogle ScholarPubMed