Skip to main content
×
Home

Half-squaring in responses of cat striate cells

  • David J. Heeger (a1)
Abstract
Abstract

Simple cells in striate cortex have been depicted as rectified linear operators, and complex cells have been depicted as energy mechanisms (constructed from the squared sums of linear operator outputs). This paper discusses two essential hypotheses of the linear/energy model: (1) that a cell's selectivity is due to an underlying (spatiotemporal and binocular) linear stage; and (2) that a cell's firing rate depends on the squared output of the underlying linear stage. This paper reviews physiological measurements of cat striate cell responses, and concludes that both of these hypotheses are supported by the data.

Copyright
References
Hide All
Adelson E.H. & Bergen J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2, 284299.
Albrecht D.G. & Geisler W.S. (1991). Motion sensitivity and the contrast-response function of simple cells in the visual cortex. Visual Neuroscience 7, 531546.
Andrews B.W. & Pollen D.A. (1979). Relationship between spatial frequency selectivity and receptive field profile of simple cells. Journal of Physiology (London) 287, 163176.
Baker C.L. (1988). Spatial and temporal determinants of directionally selective velocity preference in cat striate cortex. Journal ofNeurophysiology 59, 15571574.
Baker C.L. (1990). Spatial- and temporal-frequency selectivity as a basis for velocity preference in cat striate cortex neurons. Visual Neuroscience 4, 101113.
Baker C.L. & Cynader M.S. (1986). Spatial receptive-field properties of direction-selective neurons in cat striate cortex. Journal of Neurophysiology 55, 11361152.
Berardi N., Bisti S., Cattaneo A., Fiorentini A. & Maffei L. (1982). Correlation between the preferred orientation and spatial frequency of neurones in visual areas 17 and 18 of the cat. Journal of Physiology (London) 323, 603618.
Bonds A.B. (1989). Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Visual Neuroscience 2, 4155.
Campbell F.W., Cleland B.G., Cooper G.F. & Enroth-Cugell C. (1968). The angular selectivity of visual cortical cells to moving gratings. Journal of Physiology (London) 198, 237250.
Campbell F.W., Cooper G.F. & Enroth-Cugell C. (1969). The spatial selectivity of visual cells of the cat. Journal of Physiology (London) 203, 223235.
Citron M.C. & Emerson R.C. (1983). White noise analysis of cortical directional selectivity in cat. Brain Research 279, 271277.
Dean A.F. & Tolhurst D.J. (1983). On the distinctiveness of simple and complex cells in the visual cortex of the cat. Journal of Physiology (London) 344, 305325.
Dean A.F. & Tolhurst D.J. (1986). Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex. Experimental Brain Research 62, 143151.
Derrington A.M. & Lennie P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology (London) 357, 219240.
Devalois K. & Tootell R. (1983). Spatial-frequency-specific inhibition in cat striate cortex cells. Journal of Physiology (London) 336, 359376.
Devalois K.K., Devalois R.L. & Yund E.W. (1979). Responses of striate cortex cells to grating and checkerboard patterns. Journal of Physiology (London) 291, 483505.
Devalois R.L., Yund E.W. & Hepler N. (1982). The orientation and direction selectivity of cells in macaque visual cortex. Vision Research 22, 531544.
Emerson R.C. (1988). A linear model for symmetric receptive fields: Implications for classification test with flashed and moving images. Spatial Vision 3, 159177.
Emerson R.C., Bergen J.R. & Adelson E.H. (1992 a). Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Research 32, 203218.
Emerson R.C. & Citron M.C. (1989). Linear and nonlinear mechanisms of motion selectivity in single neurons of the cat's visual cortex. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, ed. Kleinman D.L., pp. 448453.
Emerson R.C., Citron M.C., Vaughn W.J. & Klein S.A. (1987). Nonlinear directionally selective subunits in complex cells of cat striate cortex. Journal of Neurophysiology 58, 3365.
Emerson R.C. & Gerstein G.L. (1977). Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. Journal of Neurophysiology 40, 136155.
Emerson R.C., Korenberg M.J. & Citron M.C. (1989). Identification of intensive nonlinearities in cascade models of visual cortex and its relation to cell classification. In Advanced Methods of Physiological System Modeling, ed. Marmarelis V.Z., pp. 97111. New York: Plenum.
Emerson R.C., Korenberg M.J. & Citron M.C. (1992 b). Identification of complex-cell intensive nonlinearities in a cascade model of cat visual cortex. Biological Cybernetics 66, 291300.
Enroth-Cugell C. & Robson J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology (London) 187, 517552.
Enroth-Cugell C., Robson J.G., Schweitzer-Tong D.E. & Watson A.B. (1983). Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. Journal of Physiology (London) 341, 279307.
Fahle M. & Poggio T. (1981). Visual hyperacuity: Spatiotemporal interpolation in human vision. Proceedings of the Royal Society B (London) 213, 451477.
Field D.J. & Tolhurst D.J. (1986). The structure and symmetry of simple-cell receptive field profiles in the cat's visual cortex. Proceedings of the Royal Society B (London) 228, 379400.
Foster K.H., Gaska J.P., Marcelja S. & Pollen D.A. (1983). Phase relationships between adjacent simple cells in the feline visual cortex. Journal of Physiology (London) 345, 22P.
Foster K.H., Gaska J.P., Nagler M. & Pollen D.A. (1985). Spatial and temporal frequency selectivity of neurons in visual cortical areas V1 and V2 of the macaque monkey. Journal of Physiology (London) 365, 331363.
Freeman R.D. & Ohzawa I. (1990). On the neurophysiological organization of binocular vision. Vision Research 30, 16611676.
Ganz L. & Felder R. (1984). Mechanism of directional selectivity in simple neurons of the cat's visual cortex analyzed with stationary flash sequences. Journal of Neurophysiology 51, 294324.
Glezer V.D., Tscherbach T.A., Gauselman V.E. & Bondarko V.E. (1980). Linear and nonlinear properties of simple and complex receptive fields in area 17 of the cat visual cortex. Biological Cybernetics 37, 195208.
Glezer V.D., Tscherbach T.A., Gauselman V.E. & Bondarko V.E. (1982). Spatio-temporal organization of receptive fields of the cat striate cortex. Biological Cybernetics 43, 3549.
Goodwin A.W., Henry G.H. & Bishop P.O. (1975). Direction selectivity of simple cells: Properties and mechanisms. Journal of Neurophysiology 38, 15001523.
Hamilton D.B., Albrecht D.G. & Geisler W.S. (1989). Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function. Vision Research 29, 12851308.
Hammond P. & Pomfrett C.J.D. (1990). Influence of spatial frequency on tuning and bias for orientation and direction in the cat's striate cortex. Vision Research 30, 359369.
Heeger D.J. (1990). Nonlinear model of cat striate physiology. Society for Neuroscience Abstracts 16, 229.
Heeger D.J. (1991). Nonlinear model of neural responses in cat visual cortex. In Computational Models of Visual Processing, ed. Landy M. & Movshon J.A. pp. 119133. Cambridge, Massachusetts: MIT Press.
Heeger D.J. (1992 a). Normalization of cell responses in cat striate cortex. Visual Neuroscience 9, 181197.
Heeger D.J. (1992 b). Modeling simple cell direction selectivity with normalized, half-squared, linear operators. Investigative Ophthalmology and Visual Science (Suppl.) 33, 953.
Heeger D.J. & Adelson E.H. (1989). Nonlinear model of cat striate cortex. Optics News, 15, A-42.
Heggelund P. (1981 a). Receptive-field organization of simple cells in cat striate cortex. Experimental Brain Research 42, 8998.
Heggelund P. (1981 b). Receptive-field organization of complex cells in cat striate cortex. Experimental Brain Research 42, 99107.
Heggelund P. (1986). Quantitative studies of the discharge fields of single cells in cat striate cortex. Journal of Physiology (London) 373, 277292.
Henry G.H., Bishop P.O. & Dreher B. (1974 a). Orientation axis and direction as stimulus parameters for striate cells. Vision Research 14, 767777.
Henry G.H., Dreher B. & Bishop P.O. (1974 b). Orientation specificity of cells in cat striate cortex. Journal of Neurophysiology 37, 13941409.
Henry G.H., Goodwin A.W. & Bishop P.O. (1978). Spatial summation of responses in receptive fields of single cells in cat striate cortex. Experimental Brain Research 32, 245266.
Holub R.A. & Morton-Gibson M. (1981). Response of visual cortical neurons of the cat to moving sinusoidal gratings: Response-contrast functions and spatiotemporal integration. Journal of Neurophysiology 46, 12441259.
Hubel D. & Wiesel T. (1962). Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160, 106154.
Ikeda H. & Wright M.J. (1975 a). Spatial and temporal properties of ‘sustained’ and ‘transient’ neurones in area 17 of the cat's visual cortex. Experimental Brain Research 22, 363383.
Ikeda H. & Wright M.J. (1975 b). Retinotopic distribution, visual latency and orientation tuning of “sustained” and “transient” cortical neurones in area 17 of the cat. Experimental Brain Research 22, 385398.
Jones J.P. & Palmer L.A. (1987 a). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 11871211.
Jones J.P. & Palmer L.A. (1987 b). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 12331258.
Jones J.P., Stepnoski A. & Palmer L.A. (1987). The two-dimensional spectral structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 12121232.
Kulikowski J.J. & Bishop P.O. (1981 a). Linear analysis of the response of simple cells in the cat visual cortex. Experimental Brain Research 44, 386400.
Kulikowski J.J. & Bishop P.O. (1981 b). Fourier analysis and spatial representation in the visual cortex. Experimentia 37, 160163.
Kulikowski J.J. & Bishop P.O. (1982). Silent periodic cells in the cat striate cortex. Vision Research 22, 191200.
Kulikowski J.J., Bishop P.O. & Kato H. (1981). Spatial arrangement of responses by cells in the cat visual cortex to light and dark bars and edges. Experimental Brain Research 44, 371385.
Kulikowski J.J. & Vidyasagar T.R. (1986). Space and spatial frequency: Analysis and representation in the macaque striate cortex. Experimental Brain Research 64, 518.
Maffei L. & Fiorentini A. (1973). The visual cortex as a spatial frequency analyzer. Vision Research, 13, 12551267.
Maffei L., Morrone C., Pirchio M. & Sandini G. (1979). Responses of visual cortical cells to periodic and nonperiodic stimuli. Journal of Physiology (London) 296, 2747.
Mancini M., Madden M.C. & Emerson R.C. (1990). White noise analysis of temporal properties in simple receptive fields of cat cortex. Biological Cybernetics 63, 209219.
Mclean J. & Palmer L.A. (1989). Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat. Vision Research 29, 675679.
Movshon J.A., Thompson I.D. & Tolhurst D.J. (1978 a). Spatial summation in the receptive fields of simple cells in the cat's striate cortex. Journal of Physiology (London) 283, 5377.
Movshon J.A., Thompson I.D. & Tolhurst D.J. (1978 b). Receptive-field organization of complex cells in the cat's striate cortex. Journal of Physiology (London) 283, 7999.
Movshon J.A., Thompson I.D. & Tolhurst D.J. (1978 c). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. Journal of Physiology (London) 283, 101120.
Ohzawa I., Deangelis G.C. & Freeman R.D. (1990). Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors. Science 249, 10371041.
Ohzawa I. & Freeman R.D. (1986 a). The binocular organization of simple cells in the cat's visual cortex. Journal of Neurophysiology 56, 221242.
Ohzawa I. & Freeman R.D. (1986 b). The binocular organization of complex cells in the cat's visual cortex. Journal of Neurophysiology 56, 243259.
Ohzawa I., Sclar G. & Freeman R.D. (1985). Contrast gain control in the cat's visual system. Journal of Neurophysiology 54, 651667.
Palmer L.A. & Davis T.L. (1981). Receptive-field structure in cat striate cortex. Journal of Neurophysiology 46, 260276.
Pettigrew J.D., Nikara T. & Bishop P.O. (1968). Responses to moving slits by single units in cat striate cortex. Experimental Brain Research 6, 373390.
Pollen D. & Ronner S. (1981). Phase relationships between adjacent simple cells in the visual cortex. Science 212, 14091411.
Pollen D. & Ronner S. (1982). Spatial computation performed by simple and complex cells in the visual cortex of the cat. Vision Research 22, 101118.
Pollen D. & Ronner S. (1983). Visual cortical neurons as localized spatial-frequency filters. IEEE Transactions on Systems, Man, and Cybernetics 13, 907916.
Pollen D.A., Andrews B.W. & Feldon S.E. (1978). Spatial-frequency selectivity of periodic complex cells in the visual cortex of the cat. Vision Research 18, 665682.
Pollen D.A., Gaska J.P. & Jacobson L.D. (1988). Responses of simple and complex cells to compound sine-wave gratings. Vision Research 28, 2539.
Reid R.C., Soodak R.E. & Shapley R.M. (1987). Linear mechanisms of directional selectivity in simple cells of cat striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 84, 87408744.
Reid R.C., Soodak R.E. & Shapley R.M. (1991). Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. Journal of Neurophysiology 66, 505529.
Robson J.G. (1988). Linear and nonlinear operations in the visual system. Investigative Ophthalmology and Visual Science (Suppl.) 29, 117.
Robson J.G., Tolhurst D.J., Freeman R.D. & Ohzawa I. (1988). Simple cells in the visual cortex of the cat can be narrowly tuned for spatial frequency. Visual Neuroscience 1, 415419.
Rose D. & Blakemore C. (1974). An analysis of orientation selectivity in the cat's visual cortex. Experimental Brain Research 20, 117.
Rybicki C.B., Tracy D.M. & Pollen D.A. (1972). Complex cell response depends on interslit spacing. Nature New Biology 240, 7778.
Schiller P.H., Finlay B.L. & Volman S.F. (1976). Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. Journal of Neurophysiology 39, 13201333.
Shapley R., Kaplan E. & Soodak R. (1981). Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque. Nature 292, 543545.
Shapley R., Reid R.C. & Soodak R. (1991). Spatiotemporal receptive fields and direction selectivity. In Computational Models of Visual Processing, ed. Landy M. & Movshon J.A. pp. 109118. Cambridge, Massachusetts: MIT Press.
Sillito A.M. (1977). Inhibitory processes underlying the directional specificity of simple, complex, and hypercomplex cells in the cat's visual cortex. Journal of Physiology (London) 271, 699720.
Spekreuse H. & Van Den Bero T.J.T.P. (1971). Interaction between colour and spatial coded processes converging to retinal ganglion cells in goldfish. Journal of Physiology (London) 215, 679692.
Spitzer H. & Hochstein S. (1985 a). Simpleand complex-cell response dependences on stimulation parameters. Journal of Neurophysiology 53, 12441265.
Spitzer H. & Hochstein S. (1985 b). A complex-cell receptive-field model. Journal of Neurophysiology 53, 12661286.
Suarez H. & Koch C. (1989). Linking linear threshold units with quadratic models of motion perception. Neural Computation 1, 318320.
Szulborski R.G. & Palmer L.A. (1990). The two-dimensional spatial structure of nonlinear subunits in the receptive fields of complex cells. Vision Research 30, 249254.
Szulborski R.G. & Palmer L.A. (1991). Linear behavior of complex cell subunits in cat striate cortex. Investigative Ophthalmology and Visual Science (Suppl.) 32, 1253.
Tadmor Y. & Tolhurst D.J. (1989). The effect of threshold on the relationship between the receptive-field profile and the spatial-frequency tuning curve in simple cells of the cat's striate cortex. Visual Neuroscience 3, 445454.
Tolhurst D.J. & Dean A.F. (1987). Spatial summation by simple cells in the striate cortex of the cat. Experimental Brain Research 66, 607620.
Tolhurst D.J. & Dean A.F. (1991). Evaluation of a linear model of directional selectivity in simple cells of the cat's striate cortex. Visual Neuroscience 6, 421428.
Tolhurst D.J. & Movshon J.A. (1975). Spatial and temporal contrast sensitivity of striate cortical neurons. Nature 257, 674675.
Tolhurst D.J. & Thompson I.D. (1981). On the variety of spatial frequency selectivities shown by neurons in area 17 of the cat. Proceedings of the Royal Society B (London) 213, 183199.
Troy J.B. (1983). Spatial contrast sensitivities of X and Y type neurones in the cat's dorsal lateral geniculate nucleus. Journal of Physiology (London) 344, 399417.
Van Santen J.P.H. & Sperling G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America A 2, 300321.
Watson A.B. & Ahumada A.J. (1983). A look at motion in the frequency domain. In Motion: Perception and representation, ed. Tsotsos J.K., pp. 110. New York: Association for Computing Machinery.
Watson A.B. & Ahumada A.J. (1985). Model of human visual-motion sensing. Journal of the Optical Society of America A 2, 322342.
Webster M.A. & Devalois R.L. (1985). Relationship between spatial-frequency and orientation tuning of striate-cortex cells. Journal of the Optical Society of America A 2, 11241132.
Wolbarsht M.L., Wacner H.G. & Macnichol E.F. (1961). The origin of on and off responses of retinal ganglion cells. In The Visual System: Neurophysiology and Psychophysics, ed. Jung & Kornhuber , pp. 163170. Berlin: Springer.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 207 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.