Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T05:09:58.556Z Has data issue: false hasContentIssue false

The human retina has a cone-enriched rim

Published online by Cambridge University Press:  02 June 2009

Robert W. Williams
Affiliation:
Department of Anatomy and Neurobiology, University of Tennessee, College of Medicine, Memphis

Abstract

Video-enhanced imaging of retinal wholemounts reveals an abrupt change in the composition of the photoreceptor mosaic at the edge of the human retina. Cone densities rise threefold and rod densities fall tenfold in a 1-mm-wide peripheral band. Antibodies directed against cones confirm the identification of the major subtypes of photoreceptors within this peripheral band. The cone-enriched rim is most highly developed along the nasal retinal margin, an area where the extreme lateral periphery of the visual field is imaged. This rim of cones may function as part of a rapid-acting alert mechanism under conditions of moderate and bright illumination.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, M. & Stiles, W.S. (1954). Saturation of the rod mechanism of the retina at high levels of stimulation. Opt. Acta 1, 5965.CrossRefGoogle Scholar
Conner, J.D. (1982). The temporal properties of rod vision. Journal of Physiology 332, 139155.CrossRefGoogle ScholarPubMed
Curcio, C.A., Packer, O. & Kalina, R.E. (1987). A wholemount method for sequential analysis of photoreceptors and ganglion cells in a single retina. Vision Research 27, 915.CrossRefGoogle Scholar
Curcio, C.A., Sloan, K.R., Kalina, R.E. & Hendrickson, A.E. (1990). Human photoreceptor topography. Journal of Comparative Neurology 292, 497523.CrossRefGoogle ScholarPubMed
Donders, F.C. (1877). Die Grenzen des Gesichtsfeldes in Beziehung zu denen der Netzhaut. Albrecht. v. Graef's Arch f. Ophthal. 23, 255280.CrossRefGoogle Scholar
Drasdo, N. & Fowler, C.W. (1974). Non-linear projection of the retinal image in a wide-angle schematic eye. British Journal of Ophthalmology 58, 709714.CrossRefGoogle ScholarPubMed
Fernald, R.D. (1988). Retinal rod neurogenesis. In Development of the Vertebrate Retina, eds., Finlay, B.L. & Sengelaub, D.R.New York: Plenum Press.Google Scholar
Ferree, C.E. & Rand, G. (1927). Effect of size of stimulus on size and shape of color fields. American Journal of Ophthalmology 10, 399411.CrossRefGoogle Scholar
Fite, K.V. & Lister, B.C. (1981). Bifoveal vision in Anolis lizards. Brain Behavior and Evolution 19, 144154.CrossRefGoogle ScholarPubMed
Heimer, G.V. & Taylor, C.E.D. (1974). Improved mountant for immunofluorescence preparations. Journal of Clinical Pathology 27, 254256.CrossRefGoogle ScholarPubMed
Kelling, S.T., Sengelaub, D.R., Wikler, K.C. & Finlay, B.L. (1989). Differential elasticity of the immature retina: A contribution to the development of the area centralis? Visual Neuroscience 2, 117120.CrossRefGoogle Scholar
La, Vail M.M., Rapaport, D.H. & Rakic, P. (1991). Cytogenesis in the monkey retina. Journal of Comparative Neurology (In press)CrossRefGoogle Scholar
Lerea, C.L., Bunt-Milam, A.K. & Hurley, J.B. (1989). Alpha transducin is present in blue-, green-, and red-sensitive cone photoreceptors in the human retina. Neuron 3, 367376.CrossRefGoogle ScholarPubMed
Lia, B., Williams, R.W. & Chalupa, L.M. (1987). Formation of retinal ganglion cell topography during prenatal development. Science 236, 848851.CrossRefGoogle ScholarPubMed
Ochi, S. (1927). So-called cystic degeneration in the peripheral retina. American Journal of Ophthalmology 10, 161163.CrossRefGoogle Scholar
Østerberg, G. (1935). Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica 13[ Suppl.] 6, 1103.Google Scholar
Packer, O., Hendrickson, A.E. & Curcio, C.A. (1989). Photoreceptor topography of the adult pigtail macaque (Macaca nemestrina) retina. Journal of Comparative Neurology 288, 165183.CrossRefGoogle ScholarPubMed
Polyak, S.L. (1941). The Retina. Chicago: University of Chicago Press.Google Scholar
Salzmann, M. (1912). The Anatomy and Histology of the Human Eyeball in the Normal State. Its Development and Senescence. Chicago: University of Chicago Press.Google Scholar
Schwalbe, G. (1874). Mikroscopische Anatomie des Sehnerven, der Netzhaut und das Glaskórpers. In Handbuch der Allgemeinen Augenheilkunde, Vol. 1, eds., Graefe, A. & Saemisch, T.Leipzig: Verlag W. Engelmann.Google Scholar
Stone, J. & Johnston, E. (1981). The topography of primate retina: A study of the human, bushbaby and New- and Old-World monkeys. Journal of Comparative Neurology 196, 205223.CrossRefGoogle ScholarPubMed
Tyler, C.W. (1985). Analysis of visual modulation sensitivity. II. Peripheral retina and the role of photoreceptor dimensions. Journal of the Optical Society of America 2, 393398.CrossRefGoogle ScholarPubMed
Wikler, K.C., & Rakic, P. (1990). Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. Journal of Neuroscience 10, 33903401.CrossRefGoogle ScholarPubMed
Wikler, K.C., Williams, R.W. & Rakic, P. (1990). Photoreceptor mosaic: Number and distribution of rods and cones in the rhesus monkey retina. Journal of Comparative Neurology 297, 499508.CrossRefGoogle ScholarPubMed