Skip to main content Accessibility help

Influence of motion on chromatic detection


Intense scrutiny has been focused on whether chromatic stimuli contribute to motion perception. The present study considers a related but different question: how does motion affect chromatic detection? Detection thresholds were measured for a disk that underwent a brief (13.3 ms) chromatic change in the L/(L+M) chromatic direction. The disk's presentation sequence and speed (0–16 deg/s) were manipulated. In the coherent presentation sequence, the disk moved smoothly along a circular path centered on the fixation point. In the random presentation sequence, the disk appeared randomly at positions along the circular path. In both types of sequences, the disk underwent a brief chromatic change midway through the temporal presentation sequence. Threshold was elevated in the coherent condition compared to the random condition, and threshold decreased with an increase in speed. The threshold elevation observed in the coherent presentation sequence can be accounted for by temporal integration. The decrease in threshold with an increase in speed can be accounted for by spatial integration. The results, therefore, can be explained by spatiotemporal integration, without invoking a neural mechanism specialized for motion.

Corresponding author
Address correspondence and reprint requests to: Patrick Monnier, Department of Psychology, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA. E-mail:
Hide All


Anstis, S. & Cavanagh, P. (1983). A minimum motion technique for judging equiluminance. In Colour Vision Physiology and Psychophysics, ed. Mollon, J.D. & Sharpe, L.T., pp. 155166. London, UK: Academic Press.
Cavanagh, P. & Anstis, S. (1991). The contribution of color to motion in normal and color-deficient observers. Vision Research 31, 21092148.
Cavanagh, P., Tyler, C.W., & Favreau, O.E. (1984). Perceived velocity of moving chromatic gratings. Journal of the Optical Society of America A 1, 893899.
Cole, G.R., Stromeyer, C.F., III, & Kronauer, R.E. (1990). Visual interactions with luminance and chromatic stimuli. Journal of the Optical Society of America A 7, 128140.
Culham, J.C. & Cavanagh, P. (1994). Motion capture of luminance stimuli by equiluminous color gratings and by attentive tracking. Vision Research 34, 27012706.
Dobkins, K.R. & Albright, T.D. (1993). What happens if it changes color when it moves?: Psychophysical experiments on the nature of chromatic input to motion detectors. Vision Research 33, 10191036.
Eskew, R.T., Jr., Stromeyer, C.F., III, & Kronauer, R.E. (1994). The time-course of chromatic facilitation by luminance contours. Vision Research 34, 31393144.
Gegenfurtner, K. & Hawken, M.J. (1996). Temporal and chromatic properties of motion mechanisms. Vision Research 35, 15471563.
Livingstone, M.S. & Hubel, D.H. (1987). Psychophysical evidence for separate channels for the perception of form, color, motion and depth. Journal of Neuroscience 7, 34163468.
Lu, Z.L., Lesmes, L.A., & Sperling, G. (1999). The mechanism of isoluminant chromatic motion perception. Proceedings of the National Academy of Sciences of the U.S.A. 96, 82898294.
MacLeod, D.I.A. & Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831185.
Ramachandran, V.S. & Gregory, R.L. (1978). Does colour provide an input to human motion perception. Nature 275, 5557.
Stromeyer, C.F., Chaparro, A., Rodriguez, C., Chen, D., Hu, E., & Kronauer, R.E. (1998). Short-wave cone signal in the green detection mechanism. Vision Research 38, 813826.
Tansley, B.W. & Boynton, R.M. (1978). Chromatic border perception: The role of red- and green-sensitive cones. Vision Research 18, 683697.
Thiele, A., Dobkins, K.R., & Albright, T.D. (2001). Neural correlates of chromatic motion perception. Neuron 32, 351358.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed