Skip to main content Accessibility help

Linking assumptions in amblyopia

  • DENNIS M. LEVI (a1)


Over the last 35 years or so, there has been substantial progress in revealing and characterizing the many interesting and sometimes mysterious sensory abnormalities that accompany amblyopia. A goal of many of the studies has been to try to make the link between the sensory losses and the underlying neural losses, resulting in several hypotheses about the site, nature, and cause of amblyopia. This article reviews some of these hypotheses, and the assumptions that link the sensory losses to specific physiological alterations in the brain. Despite intensive study, it turns out to be quite difficult to make a simple linking hypothesis, at least at the level of single neurons, and the locus of the sensory loss remains elusive. It is now clear that the simplest notion—that reduced contrast sensitivity of neurons in cortical area V1 explains the reduction in contrast sensitivity—is too simplistic. Considerations of noise, noise correlations, pooling, and the weighting of information also play a critically important role in making perceptual decisions, and our current models of amblyopia do not adequately take these into account. Indeed, although the reduction of contrast sensitivity is generally considered to reflect “early” neural changes, it seems plausible that it reflects changes at many stages of visual processing.


Corresponding author

*Address correspondence to: Dennis M. Levi, School of Optometry & Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020. E-mail:


Hide All
Aaen-Stockdale, C. & Hess, R.F. (2008). The amblyopic deficit for global motion is spatial scale invariant. Vision Research 48, 19651971.
Aaen-Stockdale, C., Ledgeway, T. & Hess, R.F. (2007). Second-order optic flow deficits in amblyopia. Investigative Ophthalmology and Visual Science 48, 55325538.
Astle, A.T., Webb, B.S. & McGraw, P.V. (2011). Can perceptual learning be used to treat amblyopia beyond the critical period of visual development? Ophthalmic and Physiological Optics 31, 564573.
Barlow, H.B. (1957). Increment thresholds at low intensities considered as signal/noise discriminations. Journal of Physiology 136, 469488.
Barnes, G.R., Hess, R.F., Dumoulin, S.O., Achtman, R.L. & Pike, G.B. (2001). The cortical deficit in humans with strabismic amblyopia. Journal of Physiology 533, 281297.
Barnes, G.R., Li, X., Thompson, B., Singh, K.D., Dumoulin, S.O. & Hess, R.F. (2010). Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Investigative Ophthalmology and Visual Science 51, 14321438.
Baroncelli, L., Maffei, L. & Sale, A. (2011). New perspectives in amblyopia therapy on adults: A critical role for the excitatory/inhibitory balance. Frontiers in Cellular Neuroscience 5, 25.
Barrett, B.T., Pacey, I.E., Bradley, A., Thibos, L.N. & Morrill, P. (2003). Nonveridical visual perception in human amblyopia. Investigative Ophthalmology and Visual Science 44, 15551567.
Bavelier, D., Levi, D.M., Li, R.W., Dan, Y. & Hensch, T.K. (2010). Removing brakes on adult brain plasticity: From molecular to behavioral interventions. Journal of Neuroscience 30, 1496414971.
Bi, H., Zhang, B., Tao, X., Harwerth, R.S., Smith, E.L. III & Chino, Y.M. (2011). Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia. Cerebral Cortex 21, 20332045.
Bonhomme, G.R., Liu, G.T., Miki, A., Francis, E., Dobre, M.C., Modestino, E.J., Aleman, D.O., & Haselgrove, J.C. (2006). Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging. Journal of AAPOS: The Official Publication of the American Association for Pediatric Ophthalmology and Strabismus 10, 540546.
Bonneh, Y.S., Sagi, D. & Polat, U. (2007). Spatial and temporal crowding in amblyopia. Vision Research 47, 19501962.
Bradley, A. & Freeman, R.D. (1981). Contrast sensitivity in anisometropic amblyopia. Investigative Ophthalmology and Visual Science 21, 467476.
Burgess, A.E. & Colborne, B. (1988). Visual signal detection. IV. Observer inconsistency. Journal of the Optical Society of America. A, Optics and Image Science 5, 617627.
Chandna, A., Pennefather, P.M., Kovacs, I. & Norcia, A.M. (2001). Contour integration deficits in anisometropic amblyopia. Investigative Ophthalmology and Visual Science 42, 875878.
Chung, S.T., Li, R.W. & Levi, D.M. (2006). Identification of contrast-defined letters benefits from perceptual learning in adults with amblyopia. Vision Research 46, 38533861.
Cohen, M.R. & Newsome, W.T. (2009). Estimates of the contribution of single neurons to perception depend on timescale and noise correlation. Journal of Neuroscience 29, 66356648.
Conner, I.P., Odom, J.V., Schwartz, T.L. & Mendola, J.D. (2007). Monocular activation of V1 and V2 in amblyopic adults measured with functional magnetic resonance imaging. Journal of AAPOS: The Official Publication of the American Association for Pediatric Ophthalmology and Strabismus 11, 341350.
Constantinescu, T., Schmidt, L., Watson, R. & Hess, R.F. (2005). A residual deficit for global motion processing after acuity recovery in deprivation amblyopia. Investigative Ophthalmology and Visual Science 46, 30083012.
Dallala, R., Wang, Y.Z. & Hess, R.F. (2010). The global shape detection deficit in strabismic amblyopia: Contribution of local orientation and position. Vision Research 50, 16121617.
Demanins, R. & Hess, R.F. (1998). Positional loss in strabismic amblyopia: Inter-relationship of alignment threshold, bias, spatial scale and eccentricity. Vision Research 36, 27712794.
Eggers, H.M. & Blakemore, C. (1978). Physiological basis of anisometropic amblyopia. Science 201, 264267.
Ellemberg, D., Lewis, T.L., Maurer, D., Brar, S. & Brent, H.P. (2002). Better perception of global motion after monocular than after binocular deprivation. Vision Research 42, 169179.
El-Shamayleh, Y., Kiorpes, L., Kohn, A. & Movshon, J.A. (2010). Visual motion processing by neurons in area MT of macaque monkeys with experimental amblyopia. Journal of Neuroscience 30, 1219812209.
Farzin, F. & Norcia, A.M. (2011). Impaired visual decision-making in individuals with amblyopia. Journal of Vision 11, (14). pii: 6. doi: 10.1167/11.14.6.
Field, D.J. & Hess, R.F. (1996). Uncalibrated distortions vs undersampling. Vision Research 36, 21212124.
Flom, M.C., Weymouth, F.W. & Kahneman, D. (1963). Visual resolution and contour interaction. Journal of Optical Society of America 53, 10261032.
Gold, J.M., Bennett, P.J. & Sekuler, A.B. (1999). Signal but not noise changes with perceptual learning. Nature 402, 176178.
Gold, J.M., Murray, R.F., Bennett, P.J. & Sekuler, A.B. (2000). Deriving behavioural receptive fields for visually completed contours. Current Biology: CB 10, 663666.
Goodyear, B.G., Nicolle, D.A., Humphrey, G.K. & Menon, R.S. (2000). BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. Journal of Neurophysiology 84, 19071913.
Graham, N. (1989). Visual Pattern Analyzers. New York: Oxford University Press.
Green, D.M. (1964). Consistency of auditory detection judgements. Psychological Review 71, 392407.
Hariharan, S., Levi, D.M. & Klein, S.A. (2005). “Crowding” in normal and amblyopic vision assessed with Gaussian and Gabor C’s. Vision Research 45, 617633.
Harwerth, R.S. & Smith, E.L. III (1985). Rhesus monkey as a model for normal vision of humans. American Journal of Optometry and Physiological Optics 62, 633641.
Hayward, J., Truong, G., Partanen, M. & Giaschi, D. (2011). Effects of speed, age, and amblyopia on the perception of motion-defined form. Vision Research 51, 22162223.
Hess, R.F. (1980). A preliminary investigation of neural function and dysfunction in amblyopia–I. Size-selective channels. Vision Research 20, 749754.
Hess, R.F. (1982). Developmental sensory impairment: Amblyopia or tarachopia. Human Neurobiology 1, 1729.
Hess, R.F. & Bradley, A. (1980). Contrast perception above threshold is only minimally impaired in human amblyopia. Nature 287, 463464.
Hess, R.F., Bradley, A. & Piotrowski, L. (1983). Contrast-coding in amblyopia. I. Differences in the neural basis of human amblyopia. Proceedings of the Royal Society of London. Series B, Biological Sciences. Royal Society 217, 309330.
Hess, R.F., Campbell, F.W. & Greenhalgh, T. (1978). On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss. Pflugers Archiv: European Journal of Physiology 377, 201207.
Hess, R.F. & Demanins, R. (1998). Contour integration in anisometropic amblyopia. Vision Research 38, 889894.
Hess, R.F. & Field, D.J. (1994). Is the spatial deficit in strabismic amblyopia due to loss of cells or an uncalibrated disarray of cells? Vision Research 34, 33973406.
Hess, R.F. & Holliday, I.E. (1992). The spatial localization deficit in amblyopia. Vision Research 32, 13191339.
Hess, R.F. & Howell, E.R. (1977). The threshold contrast sensitivity function in strabismic amblyopia: Evidence for a two type classification. Vision Research 17, 10491055.
Hess, R.F. & Jacobs, R.J. (1979). A preliminary report of acuity and contour interactions across the amblyope’s visual field. Vision Research 19, 14031408.
Hess, R.F., McIlhagga, W. & Field, D. (1997 b). Contour integration in strabismic amblyopia: The sufficiency of an explanation based on positional uncertainty. Vision Research 37, 31453316.
Hess, R.F., Thompson, B., Gole, G. & Mullen, K.T. (2009). Deficient responses from the lateral geniculate nucleus in humans with amblyopia. The European Journal of Neuroscience 29, 10641070.
Hess, R.F., Wang, Y.Z., Demanins, R., Wilkinson, F. & Wilson, H.R. (1999). A deficit in strabismic amblyopia for global shape detection. Vision Research 39, 901914.
Ho, C.S. & Giaschi, D. (2006). Deficient maximum motion displacement in amblyopia. Vision Research 46, 45954603.
Ho, C.S. & Giaschi, D. (2007). Stereopsis-dependent deficits in maximum motion displacement in strabismic and anisometropic amblyopia. Vision Research 47, 27782785.
Ho, C.S. & Giaschi, D. (2009). Low- and high-level motion perception deficits in anisometropic and strabismic amblyopia: Evidence from fMRI. Vision Research 49, 28912901.
Ho, C.S., Paul, P.S., Asirvatham, A., Cavanagh, P., Cline, R. & Giaschi, D.E. (2006). Abnormal spatial selection and tracking in children with amblyopia. Vision Research 46, 32743283.
Hou, C., Pettet, M.W. & Norcia, A.M. (2008). Abnormalities of coherent motion processing in strabismic amblyopia: Visual-evoked potential measurements. Journal of Vision 8, 112.
Huang, C.B., Lu, Z.L. & Zhou, Y. (2009). Mechanisms underlying perceptual learning of contrast detection in adults with anisometropic amblyopia. Journal of Vision 9, 24.124.14. doi: 10.1167/9.11.24.
Hubel, D.H. & Wiesel, T.N. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology 28, 10291040.
Hubel, D.H., Wiesel, T.N. & LeVay, S. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 278, 377409.
Ikeda, H. & Tremain, K.E. (1978). Amblyopia resulting from penalisation: Neurophysiological studies of kittens reared with atropinisation of one or both eyes. The British Journal of Ophthalmology 62, 2128.
Ikeda, H. & Wright, M.J. (1976). Properties of LGN cells in kittens reared with convergent squint: A neurophysiological demonstration of amblyopia. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale 25, 6377.
Imamura, K., Richter, H., Fischer, H., Lennerstrand, G., Franzen, O., Rydberg, A., Andersson, J., Schneider, H., Onoe, H., Watanabe, Y. & Langstrom, B. (1997). Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia. Neuroscience Letters 225, 173176.
Kind, P.C., Mitchell, D.E., Ahmed, B., Blakemore, C., Bonhoeffer, T. & Sengpiel, F. (2002). Correlated binocular activity guides recovery from monocular deprivation. Nature 416, 430433.
Kiorpes, L. (2006). Visual processing in amblyopia: Animal studies. Strabismus 14, 310.
Kiorpes, L., Kiper, D.C., O’Keefe, L.P., Cavanaugh, J.R. & Movshon, J.A. (1998). Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. Journal of Neuroscience 18, 64116424.
Kiorpes, L. & McKee, S.P. (1999). Neural mechanisms underlying amblyopia. Current Opinion in Neurobiology 9, 480486.
Kozma, P. & Kiorpes, L. (2003). Contour integration in amblyopic monkeys. Visual Neuroscience 20, 577588.
Lagreze, W.D. & Sireteanu, R. (1992). [Errors of monocular localization in strabismic amblyopia. Two-dimensional distortion]. Klin Monbl Augenheilkd 201, 9296.
Lerner, Y., Hendler, T., Malach, R., Harel, M., Leiba, H., Stolovitch, C. & Pianka, P. (1996). Selective fovea-related deprived activation in retinotopic and high-order visual cortex of human amblyopes. Neuroimage 33, 169179.
Levi, D.M. (2006). Visual processing in amblyopia: Human studies. Strabismus 14, 1119.
Levi, D.M. (2012). Prentice award lecture 2011: Removing the brakes on plasticity in the amblyopic brain. Optometry and Vision Science: Official Publication of the American Academy of Optometry 89, 827838.
Levi, D.M. & Harwerth, R.S. (1977). Spatio-temporal interactions in anisometropic and strabismic amblyopia. Investigative Ophthalmology and Visual Science 16, 9095.
Levi, D.M. & Harwerth, R.S. (1978). Contrast evoked potentials in strabismic and anisometropic amblyopia. Investigative Ophthalmology and Visual Science 17, 571575.
Levi, D.M. & Harwerth, R.S. (1982). Psychophysical mechanisms in humans with amblyopia. American Journal of Optometry and Physiological Optics 59, 936951.
Levi, D.M., Hariharan, S. & Klein, S.A. (2002). Suppressive and facilitatory spatial interactions in amblyopic vision. Vision Research 42, 13791394.
Levi, D.M., Harwerth, R.S. & Smith, E.L. III (1979). Humans deprived of normal binocular vision have binocular interactions tuned to size and orientation. Science 206, 852854.
Levi, D.M. & Klein, S. (1982 a). Hyperacuity and amblyopia. Nature 298, 268270.
Levi, D.M. & Klein, S. (1982 b). Differences in vernier discrimination for grating between strabismic and anisometropic amblyopes. Investigative Ophthalmology and Visual Science 23, 398407.
Levi, D.M. & Klein, S.A. (1983). Spatial localization in normal and amblyopic vision. Vision Research 23, 10051017.
Levi, D.M. & Klein, S.A. (1985). Vernier acuity, crowding and amblyopia. Vision Research 25, 979991.
Levi, D.M. & Klein, S.A. (1986). Sampling in spatial vision. Nature 320, 360362.
Levi, D.M. & Klein, S.A. (1996). Limitations on position coding imposed by undersampling and univariance. Vision Research 36, 21112120.
Levi, D.M. & Klein, S.A. (2003). Noise provides some new signals about the spatial vision of amblyopes. Journal of Neuroscience 23, 25222526.
Levi, D.M., Klein, S.A. & Chen, I. (2005 a). What is the signal in noise? Vision Research 45, 18351846.
Levi, D.M., Klein, S.A. & Chen, I. (2007 a). The response of the amblyopic visual system to noise. Vision Research 47, 25312542.
Levi, D.M., Klein, S.A. & Chen, I. (2008). What limits performance in the amblyopic visual system: Seeing signals in noise with an amblyopic brain. Journal of Vision 8, 123.
Levi, D.M., Klein, S.A., Sharma, V. & Nguyen, L. (2000). Detecting disorder in spatial vision. Vision Research 40, 23072327.
Levi, D.M., Klein, S.A. & Wang, H. (1994 a). Amblyopic and peripheral vernier acuity: A test-pedestal approach. Vision Research 34, 32653292.
Levi, D.M., Klein, S.A. & Wang, H. (1994 b). Discrimination of position and contrast in amblyopic and peripheral vision. Vision Research 34, 32933313.
Li, R.W. & Levi, D.M. (2004). Characterizing the mechanisms of improvement for position discrimination in adult amblyopia. Journal of Vision 4, 476487. doi: 10:1167/4.6.7.
Levi, D.M. & Li, R.W. (2009). Perceptual learning as a potential treatment for amblyopia: A mini-review. Vision Research 49, 25352549.
Levi, D.M., McKee, S.P. & Movshon, J.A. (2011). Visual deficits in anisometropia. Vision Research 51, 4857.
Levi, D.M., Song, S. & Pelli, D.G. (2007 b). Amblyopic reading is crowded. Journal of Vision 7, 21.121.17.
Levi, D.M. & Tripathy, S.P. (2006). Is the ability to identify deviations in multiple trajectories compromised by amblyopia? Journal of Vision 6, 13671379.
Levi, D.M., Waugh, S.J. & Beard, B.L. (1994 c). Spatial scale shifts in amblyopia. Vision Research 34, 33153333.
Levi, D.M., Yu, C., Kuai, S.G. & Rislove, E. (2007 c). Global contour processing in amblyopia. Vision Research 47, 512524.
Li, X., Dumoulin, S.O., Mansouri, B. & Hess, R.F. (2007). Cortical deficits in human amblyopia: Their regional distribution and their relationship to the contrast detection deficit. Investigative Ophthalmology and Visual Science 48, 15751591.
Li, R.W., Klein, S.A. & Levi, D.M. (2008). Prolonged perceptual learning of positional acuity in adult amblyopia: Perceptual template retuning dynamics. Journal of Neuroscience 28, 1422314229.
Li, R.W., Ngo, C., Nguyen, J. & Levi, D.M. (2011). Video-game play induces plasticity in the visual system of adults with amblyopia. PLoS Biology 9, e1001135. doi: 10.1371/journal.pbio.1001135.
Loshin, D.S. & Levi, D.M. (1983). Suprathreshold contrast perception in functional amblyopia. Documenta Ophthalmologica. Advances in Ophthalmology 55, 213236.
Mansouri, B., Allen, H.A. & Hess, R.F. (2005). Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia. Vision Research 45, 24492460.
Mansouri, B. & Hess, R.F. (2006). The global processing deficit in amblyopia involves noise segregation. Vision Research 46, 41044117.
McIlhagga, W. & Paakkonen, A. (1999). Noisy templates explain area summation. Vision Research 39, 367372.
McKee, S.P., Levi, D.M. & Movshon, J.A. (2003). The pattern of visual deficits in amblyopia. Journal of Vision 3, 380405.
Muckli, L., Kiess, S., Tonhausen, N., Singer, W., Goebel, R. & Sireteanu, R. (2006). Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes. Vision Research 46, 506526.
Mussap, A.J. & Levi, D.M. (2000). Amblyopic deficits in detecting a dotted line in noise. Vision Research 40, 32973307.
Neri, P. & Levi, D.M. (2006). Receptive versus perceptive fields from the reverse-correlation viewpoint. Vision Research 46, 24652474.
Parker, A.J. & Newsome, W.T. (1998). Sense and the single neuron: Probing the physiology of perception. Annual Review of Neuroscience 21, 227277.
Pelli, D.G. (1990). The quantum efficiency of vision. In Visual Coding and Efficiency, ed. Blakemore, C. Cambridge: Cambridge University Press.
Pelli, D.G. & Farell, B. (1999). Why use noise? Journal of the Optical Society of America A 16, 647653.
Pelli, D.G., Levi, D.M. & Chung, S.T. (2004). Using visual noise to characterize amblyopic letter identification. Journal of Vision 4, 904920.
Peters, A. & Yilmaz, E. (1993). Neuronal organization in area 17 of cat visual cortex. Cerebral Cortex 3, 4968.
Popple, A.V. & Levi, D.M. (2000). Amblyopes see true alignment where normal observers see illusory tilt. Proceedings of the National Academy of Sciences of the United States of America 97, 1166711672.
Popple, A.V. & Levi, D.M. (2008). The attentional blink in amblyopia. Journal of Vision 8, 12.112.19.
Pugh, M. (1958). Visual distortion in Amblyopia. British Journal of Ophthalmology, 42, 449–60.
Rentschler, I., Hilz, R. & Brettel, H. (1980). Spatial tuning properties in human amblyopia cannot explain the loss of optotype acuity. Behavioural Brain Research 1, 433443.
Repka, M.X. & Holmes, J.M. (2012). Lessons from the amblyopia treatment studies. Ophthalmology 119, 657658.
Rislove, E.M., Hall, E.C., Stavros, K.A. & Kiorpes, L. (2010). Scale-dependent loss of global form perception in strabismic amblyopia. Journal of Vision 10, 25.
Secen, J., Culham, J., Ho, C. & Giaschi, D. (2011). Neural correlates of the multiple-object tracking deficit in amblyopia. Vision Research 51, 25172527.
Shadlen, M., Britten, K., Newsome, W.T. & Movshon, J.A. (1996). A computational analysis of the relationship between neuronal and behavioral responses to visual motion. Journal of Neuroscience 16, 14861510.
Sharma, V., Levi, D.M. & Coletta, N.J. (1999). Sparse-sampling of gratings in the visual cortex of strabismic amblyopes. Vision Research 39, 35263536.
Sharma, V., Levi, D.M. & Klein, S.A. (2000). Undercounting features and missing features: Evidence for a high-level deficit in strabismic amblyopia. Nature Neuroscience 3, 496501.
Simmers, A.J. & Bex, P.J. (2004). The representation of global spatial structure in amblyopia. Vision Research 44, 523533.
Simmers, A.J., Ledgeway, T., Hess, R.F. & McGraw, P.V. (2003). Deficits to global motion processing in human amblyopia. Vision Research 43, 729738.
Simmers, A.J., Ledgeway, T., Mansouri, B., Hutchinson, C.V. & Hess, R.F. (2006). The extent of the dorsal extra-striate deficit in amblyopia. Vision Research 46, 25712580.
Sireteanu, R., Lagreze, W.D. & Constantinescu, D.H. (1993). Distortions in two-dimensional visual space perception in strabismic observers. Vision Research 33, 677690.
Stuart, J.A. & Burian, H.M. (1962). A study of separation difficulty. Its relationship to visual acuity in normal and amblyopic eyes. American Journal of Ophthalmology 53, 471477.
Teller, D.Y. (1984). Linking propositions. Vision Research 24, 12331246.
Tripathy, S.P. & Levi, D.M. (2008). On the effective number of tracked trajectories in amblyopic human vision. Journal of Vision 8, 8.18.22.
Wang, J., Ho, C. & Giaschi, D. (2007). Deficient motion-defined and texture-defined figure-ground segregation in amblyopic children. Journal of Pediatric Ophthalmology and Strabismus 44, 363371.
Wang, H., Levi, D.M. & Klein, S.A. (1998). Spatial uncertainty and sampling efficiency in amblyopic position acuity. Vision Research 38, 12391251.
Watt, R.J. & Hess, R.F. (1987). Spatial information and uncertainty in anisometropic amblyopia. Vision Research 27, 661674.
Wilson, H. (1991). Model of peripheral and amblyopic hyperacuity. Vision Research, 31, 967982.
Wong, E.H. & Levi, D.M. (2005). Second-order spatial summation in amblyopia. Vision Research 45, 27992809.
Wong, E.H., Levi, D.M. & McGraw, P.V. (2001). Is second-order spatial loss in amblyopia explained by the loss of first-order spatial input? Vision Research 41, 29512960.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed