Skip to main content
×
×
Home

Noninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic

  • BENJAMIN SAJDAK (a1), YUSUFU N. SULAI (a2), CHRISTOPHER S. LANGLO (a1), GABRIEL LUNA (a3), STEVEN K. FISHER (a3), DANA K. MERRIMAN (a4) and ALFREDO DUBRA (a1) (a2) (a5)...
Abstract

Ground squirrels are an increasingly important model for studying visual processing, retinal circuitry, and cone photoreceptor function. Here, we demonstrate that the photoreceptor mosaic can be longitudinally imaged noninvasively in the 13-lined ground squirrel (Ictidomys tridecemlineatus) using confocal and nonconfocal split-detection adaptive optics scanning ophthalmoscopy using 790 nm light. Photoreceptor density, spacing, and Voronoi analysis are consistent with that of the human cone mosaic. The high imaging success rate and consistent image quality in this study reinforce the ground squirrel as a practical model to aid drug discovery and testing through longitudinal imaging on the cellular scale.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Noninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Noninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Noninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Address correspondence to: Alfredo Dubra, Medical College of Wisconsin, The Eye Institute, 925 N. 87th Street, Milwaukee, WI 53226. E-mail: adubra@mcw.edu
References
Hide All
Ahnelt, P.K. (1985). Characterization of the color related receptor mosaic in the ground squirrel retina. Vision Research 25, 15571567.
Baraas, R.C., Carroll, J., Gunther, K.L., Chung, M., Williams, D.R., Foster, D.H. & Neitz, M. (2007). Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. Journal of the Optical Society of America A 24, 14381447.
Biss, D.P., Sumorok, D., Burns, S.A., Webb, R.H., Zhou, Y., Bifano, T.G., Cote, D., Veilleux, I., Zamiri, P. & Lin, C.P. (2007). In vivo fluorescent imaging of the mouse retina using adaptive optics. Optics Letters 32, 659661.
Carroll, J., Baraas, R.C., Wagner-Schuman, M., Rha, J., Siebe, C.A., Sloan, C., Tait, D.M., Thompson, S., Morgan, J.I.W., Neitz, J., Williams, D.R., Foster, D.H. & Neitz, M. (2009). Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in the M-cone opsin. Proceedings of the National Academy of Sciences of the United States of America 106, 2094820953.
Chou, B.R. & Cullen, A.P. (1984). Spectral transmittance of the ocular media of the thirteen-lined ground squirrel (Spermophilus tridecemlineatus). Canadian Journal of Zoology 62, 825830.
Chui, T.Y.P., Song, H. & Burns, S.A. (2008). Adaptive-optics imaging of human cone photoreceptor distribution. Journal of the Optical Society of America A 25, 30213029.
Curcio, C.A., Sloan, K.R., Kalina, R.E. & Hendrickson, A.E. (1990). Human photoreceptor topography. Journal of Comparative Neurology 292, 497523.
Curcio, C.A. & Sloan, K.R. (1992). Packing geometry of human cone photoreceptors: Variation with eccentricity and evidence for local anisotropy. Visual Neuroscience 9, 169180.
DeVries, S.H. & Li, W. (2004). Separate blue and green cone networks in the mammalian retina. Nature Neuroscience 7, 751756.
Dubra, A. & Harvey, Z. (2010). Registration of 2D images from fast scanning ophthalmic instruments. In Proceedings of the 4th International Conference on Biomedical Image Registration, pp. 6071. Heidelberg: Spring-Verlag.
Dubra, A. & Sulai, Y. (2011). Reflective afocal broadband adaptive optics scanning ophthalmoscope. Biomedical Optics Express 2, 17571768.
Rossi, E.A., Chung, M., Dubra, A., Hunter, J.J., Merigan, W.H. & Williams, D.R. (2011). Imaging retinal mosaics in the living eye. Eye 25, 301308.
Eigner, D., Wundsch, L. & von Lutzow-Kafka, A. (1984). Spectral sensitivity of the European ground squirrel (Citellus citellus L.). Ophthalmic Research 16, 4853.
Geng, Y., Dubra, A., Yin, L., Merigan, W.H., Sharma, R., Libby, R.T. & Williams, D.R. (2012). Adaptive optics retinal imaging in the living mouse eye. Biomedical Optics Express 3, 715734.
Geng, Y., Greenberg, K.P., Wolfe, R., Gray, D.C., Hunter, J.J., Dubra, A., Flannery, J.G., Williams, D.R. & Porter, J. (2009). In vivo imaging of microscopic structures in the rat retina. Investigative Ophthalmology & Visual Science 50, 58725879.
Geng, Y., Porter, J., Gray, D.C., Greenberg, K.P., Wolfe, R., Dubra, A., Twietmeyer, T., Ahmad, K., Flannery, J.G. & Williams, D.R. (2007). In vivo adaptive optics imaging of rat retinal ganglion cells. In ARVO Annual Meeting, Vol. 48, abstract 4260. Fort Lauderdale, Florida, USA: Investigative Ophthalmology & Visual Science.
Gray, D.C., Wolfe, R., Gee, B.P., Scoles, D., Geng, Y., Masella, B.D., Dubra, A., Luque, S., Williams, D.R. & Merigan, W.H. (2008). In vivo imaging of the fine stucture of rhodamin-labeled macaque retinal ganglion cells. Investigative Ophthalmology & Visual Science 49, 467473.
Guevara-Torres, A., Williams, D.R. & Schallek, J.B. (2015). Imaging translucent cell bodies in the living mouse retina without contrast agents. Biomedical Optics Express 6, 21062119.
Gur, M. & Sivak, J.G. (1979). Refractive state of the eye of a small diurnal mammal: The groud squirrel. Journal of the Optical Society of America B 56, 689695.
Hughes, A. (1977). The topography of vision in animals with contrasting life styles. In Handbook of Sensory Physiology, Vol. VII/5, ed. Crescitelli, F., pp. 614642. Berlin: Springer.
Hunter, J.J., Masella, B., Dubra, A., Sharma, R., Yin, L., Merigan, W.H., Palczewska, G., Palczewski, K. & Williams, D.R. (2010). Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy. Biomedical Optics Express 2, 139148.
Jacobs, G.H., Tootell, R.B., Fisher, S.K. & Anderson, D.H. (1980). Rod photoreceptors and scotopic vision in ground squirrels. The Journal of Comparative Neurology 189, 113125.
Jacobs, G.H. & Yolton, R.L. (1969). Dichromacy in the ground squirrel. Nature 223, 414415.
Kisilak, M.L., Bunghardt, K., Hunter, J.J., Irving, E.L. & Campbell, M.C.W. (2012). Longitudinal in vivo imaging of cones in the alert chicken. Optometry and Vision Science 89, 644651.
Kryger, Z., Galli-Resta, L., Jacobs, G.H. & Reese, B.E. (1998). The topography of rod and cone photoreceptors in the retina of the ground squirrel. Visual Neuroscience 15, 685691.
Li, K.Y. & Roorda, A. (2007). Automated identification of cone photoreceptors in adaptive optics retinal images. Journal of the Optical Society of America A 24, 13581363.
Li, K.Y., Tiruveedhula, P. & Roorda, A. (2010). Intersubject variability of foveal cone photoreceptor density in relation to eye length. Investigative Ophthalmology & Visual Science 51, 68586867.
Liang, J., Williams, D.R. & Miller, D.T. (1997). Supernormal vision and high-resolution retinal imaging through adaptive optics. Journal of the Optical Society of America A 11, 28842892.
Light, A.C., Zhu, Y., Shi, J., Saszik, S., Lindstrom, S., Davidson, L., Li, X., Chiodo, V.A., Hauswirth, W.W., Li, W. & DeVries, S.H. (2012). Organizational motifs for ground squirrel cone bipolar cells. The Journal of Comparative Neurology 520, 28642887.
Long, K.O. & Fisher, S.K. (1983). The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi . The Journal of Comparative Neurololgy 221, 329340.
McCourt, M.E. & Jacobs, G.H. (1984). Refractive state, depth of focus and accommodation of the eye of the California ground squirrel (Spermolphilus beecheyi). Vision Research 24, 12611266.
Merriman, D.K., Lahvis, G., Jooss, M., Gesicki, J.A. & Schill, K. (2012). Current practices in a captive breeding colony of 13-lined ground squirrels (Ictidomys tridecemlineatus). Lab Animal 41, 315325.
Roorda, A., Romero-Borja, F., Donnelly, W.J., Queener, H., Hebert, T.J. & Campbell, M.C.W. (2002). Adaptive optics scanning laser ophthalmoscopy. Optics Express 10, 405412.
Rosolen, S.G., Lamory, B., Harms, F., Sahel, J.A., Picaud, S. & LeGargasson, J.F. (2010). Cellular-resolution in vivo imaging of the feline retina using adaptive optics: Preliminary results. Veterinary Ophthalmology 13, 369376.
Rossi, E.A. & Roorda, A. (2010). The relationship between visual resolution and cone spacing in the human fovea. Nature Neuroscience 13, 156157.
Sakai, T., Calderone, J.B., Lewis, G.P., Linberg, K.A., Fisher, S.K. & Jacobs, G.H. (2003). Cone photoreceptor recovery after experimental detachment and reattachment: An immunocytochemical, morphological, and electrophysiological study. Investigative Ophthalmology & Visual Science 44, 416425.
Schallek, J., Geng, Y., Nguyen, H. & Williams, D.R. (2013). Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. Investigative Ophthalmology & Visual Science 54, 82378250.
Scoles, D., Sulai, Y.N. & Dubra, A. (2013). In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomedical Optics Express 4, 17101723.
Scoles, D.H., Sulai, Y.N., Langlo, C., Fishman, G.A., Curcio, C.A., Carroll, J. & Dubra, A. (2014). In vivo imaging of human cone photoreceptor inner segments. Investigative Ophthalmology & Visual Science 55, 42444251.
Sharma, R., Yin, L., Geng, Y., Merigan, W.H., Palczewska, G., Palczewski, K., Williams, D.R. & Hunter, J.J. (2013). In vivo two-photon imaging of the mouse retina. Biomedical Optics Express 4, 12851293.
Sulai, Y.N. & Dubra, A. (2014). Optical design of broadband scanning adaptive optics ophthalmoscope for the mouse eye. In MEMS Adaptive Optics VIII, Vol. 89780E, ed. Bifano, T.G., Kubby, J. & Gigan, S., San Francisco, CA: Proceedings SPIE.
Sussman, D., Chou, B.R. & Lakshminarayanan, V. (2011). Eye model for the ground squirrel. Journal of Modern Optics 58, 18891896.
Van Hooser, S.D. & Nelson, S.B. (2006). The squirrel as a rodent model of the human visual system. Visual Neuroscience 23, 765778.
von Schantz, M., Szel, A., van Veen, T. & Farber, D.B. (1994). Expression of phototransduction cascade genes in the ground squirrel retina. Investigative Ophthalmology & Visual Science 35, 25582566.
Walker, M.K., Blanco, L., Kivlin, R., Choi, S.S. & Doble, N. (2015). Measurement of the photoreceptor pointing in the living chick eye. Vision Research 109, 5967.
Yin, L., Geng, Y., Osakada, F., Sharma, R., Cetin, A.H., Callaway, E.M., Williams, D.R. & Merigan, W.H. (2013). Imaging light responses of retinal ganglion cells in the living mouse eye. Journal of Neurophysiology 109, 24152421.
Yin, L., Masella, B., Dalkara, D., Zhang, J., Flannery, J.G., Schaffer, D.V., Williams, D.R. & Merigan, W.H. (2014). Imaging light responses of foveal ganglion cells in the living macaque eye. The Journal of Neuroscience 34, 65966605.
Zawadzki, R.J., Zhang, P., Zam, A., Miller, E.B., Goswami, M., Wang, X., Jonnal, R.S., Lee, S.H., Kim, D.Y., Flannery, J.G., Werner, J.S., Burns, M.E. & Pugh, E.N. Jr. (2015). Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3d localization of fluorescent cells in the mouse retina. Biomedical Optics Express 6, 21912210.
Zhou, X., Bedggood, P. & Metha, A. (2012). Limitations to adaptive optics image quality in rodent eyes. Biomedical Optics Express 3, 18111824.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed