Skip to main content
×
Home
    • Aa
    • Aa

Normalization of cell responses in cat striate cortex

  • David J. Heeger (a1)
Abstract
Abstract

Simple cells in the striate cortex have been depicted as half-wave-rectified linear operators. Complex cells have been depicted as energy mechanisms, constructed from the squared sum of the outputs of quadrature pairs of linear operators. However, the linear/energy model falls short of a complete explanation of striate cell responses. In this paper, a modified version of the linear/energy model is presented in which striate cells mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast. This paper reviews experimental measurements of striate cell responses, and shows that the new model explains a significantly larger body of physiological data.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

E.H. Adelson & J.R. Bergen (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2, 284299.

D.G. Albrecht , S.B. Farrar & D.B. Hamilton (1984). Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. Journal of Physiology (London) 347, 713739.

P.O. Bishop , J.S. Coombs & G.H. Henry (1973). Receptive fields of simple cells in the cat striate cortex. Journal of Physiology (London) 231, 3160.

C. Blakemore & E.A. Tobin (1972). Lateral inhibition between orientation detectors in the cat's visual cortex. Experimental Brain Research 15, 439440.

J. Bolz & C.D. Gilbert (1986). Generation of end-inhibition in the visual cortex via interlaminar connections. Nature 320, 362365.

F.W. Campbell , G.F. Cooper & C. Enroth-Cugell (1968). The angular selectivity of visual cortical cells to moving gratings. Journal of Physiology (London) 198, 237250.

F.W. Campbell , G.F. Cooper & C. Enroth-Cugell (1969). The spatial selectivity of visual cells of the cat. Journal of Phvsiology (London) 203, 223235.

Li. Chao-Yi & O. Creutzfeldt (1984). The representation of contrast and other stimulus parameters by single neurons in area 17 of the cat. Pflugers Archives 401, 304314.

A.F. Dean (1981). The relationship between response amplitude and contrast for cat striate cortical neurones. Journal of Physiology (London) 318, 413427.

A.F. Dean (1983). Adaptation-induced alteration of the relation between response amplitude and contrast in cat striate cortical mechanisms. Vision Research 23, 249256.

A.F. Dean & D.J. Tolhurst (1983). On the distinctiveness of simple and complex cells in the visual cortex of the cat. Journal of Physiology (London) 344, 305325.

A.F. Dean & D.J. Tolhurst (1986). Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex. Experimental Brain Research 62, 143151.

A.F. Dean , D.J. Tolhurst & N.S. Walker (1982). Nonlinear temporal summation by simple cells in cat striate cortex demonstrated by failure of superposition. Experimental Brain Research 45, 456458.

E.J. DeBruvn & A.B. Bonds (1986). Contrast adaptation in the cat is not mediated by GABA. Brain Research 383, 339342.

A.M. Derrington & P. Lennie (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology (London) 357, 219240.

K. DeValois & R. Tootell (1983). Spatial-frequency-specific inhibition in cat striate cortex cells. Journal of Physiology (London) 336, 359376.

R.L. DeValois , L.G. Thorell & D.G. Albrecht (1985). Periodicity of striate-cortex-cell receptive fields. Journal of the Optical Society of America A 2, 11151123.

R.J. Douglas , K.A.C. Martin & D. Whitteridge (1988). Selective responses of visual cortical cells do not depend on shunting inhibition. Nature 332, 642644.

R.C. Emerson & M.C. Citron (1989). Linear and nonlinear mechanisms of motion selectivity in single neurons of the cat's visual cortex. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, ed pp. 448453. Cambridge, Massachusetts: IEEE.

D. Ferster (1981). A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. Journal of Physiology (London) 311, 623655.

D. Ferster & S. Lindstrom (1983). An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. Journal of Physiology (London) 342, 181215.

C.D. Gilbert (1977). Laminar differences in receptive properties of cells in cat primary visual cortex. Journal of Physiology (London) 268, 391421.

C.D. Gilbert & T.N. Wiesel (1990). The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Research 30, 16891701.

V.D. Glezer , T.A. Tscherbach , V.E. Gauselman & V.E. Bondarko (1980). Linear and nonlinear properties of simple and complex receptive fields in area 17 of the cat visual cortex. Biological Cybernetics 37, 195208.

V.D. Glezer , T.A. Tscherbach , V.E. Gauselman & V.E. Bondarko (1982). Spatio-temporal organization of receptive fields of the cat striate cortex. Biological Cybernetics 43, 3549.

P. Hammond & B. Ahmed (1985). Length summation of complex cells in cat striate cortex: A reappraisal of the special/standard classification. Neuroscience 15, 639649.

P. Hammond & D.M. MacKay (1981). Modulatory influences of moving textured backgrounds on responsiveness of simple cells in feline striate cortex. Journal of Physiology (London) 319, 431442.

P. Hammond , G.S. Mouat & A.T. Smith (1985). Motion after-effects in cat striate cortex elicited by moving gratings. Experimental Brain Research 60, 411416.

P. Hammond , G.S. Mouat & A.T. Smith (1986). Motion after-effects in cat striate cortex elicited by moving texture. Vision Research 26, 10551060.

P. Hammond , G.S. Mouat & A.T. Smith (1988). Neural correlates of motion after-effects in cat striate cortical neurones: Monocular adaptation. Experimental Brain Research 72, 120.

P. Hammond , C.J.D. Pomfrett & B. Ahmed (1989). Neural motion after-effects in the cat's striate cortex: Orientation selectivity. Vision Research 29, 16711683.

Y. Hata , T. Tsumoto , H. Sato , K. Hagihara & H. Tamura (1988). Inhibition contributes to orientation selectivity in visual cortex of cat. Nature 335, 815817.

D.J. Heeger (1992a). Half-squaring in responses of cat simple cells. Visual Neuroscience (in press).

R. Hess , K. Negishi & O.D. Creutzfeldt (1975). The horizontal spread of intracortical inhibition in the visual cortex. Experimental Brain Research 22, 415419.

K.R. Hoffman & J. Stone (1971). Conduction velocity of afferent to cat visual cortex: A correlation with cortical receptive fields of single cells in cat striate cortex. Brain Research 32, 460466.

D. Hubel & T. Wiesel (1962). Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160, 106154.

S. Kaji & N. Kawabata (1985). Neural interactions of two moving patterns in the direction and orientation domain in the complex cells of cat's visual cortex. Vision Research 25, 749753.

J.J. Kulikowski & P.O. Bishop (1982). Silent periodic cells in the cat striate cortex. Vision Research 22, 191200.

J.J. Kulikowski , P.O. Bishop & H. Kato (1981). Spatial arrangement of responses by cells in the cat visual cortex to light and dark bars and edges. Experimental Brain Research 44, 371385.

T. Maddess , M.E. McCourt , B. Blakeslee & R.B. Cunningham (1988). Factors governing the adaptation of cells in area 17 of the cat visual cortex. Biological Cybernetics 59, 229236.

L. Maffei & A. Fiorentini (1973). The visual cortex as a spatialfrequency analyzer. Vision Research 13, 12551267.

L. Maffei & A. Fiorentini (1976). The unresponsive regions of visual cortical receptive fields. Vision Research 16, 11311139.

L. Maffei , A. Fiorentini & S. Bisti (1973). Neural correlate of perceptual adaptation to gratings. Science 182, 10361038.

K.A.C. Martin & D. Whitteridge (1984). Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. Journal of Physiology (London) 353, 463504.

J. McLean & L.A. Palmer (1989). Contribution of linear spatiotemporal receptive-field structure to velocity selectivity of simple cells in area 17 of cat. Vision Research 29, 675679.

M.C. Morrone , D.C. Burr & L. Maffei (1982). Functional implications of cross-orientation inhibition of cortical visual cells. Proceedings of the Royal Society B (London) 216, 335354.

J.A. Movshon (1975). The velocity tuning of single units in cat striate cortex. Journal of Physiology (London) 249, 445468.

J.A. Movshon & P. Lennie (1979). Pattern-selective adaptation in visual cortical neurones. Nature 278, 850852.

J.A. Movshon , I.D. Thompson & D.J. Tolhurst (1978a). Spatial summation in the receptive fields of simple cells in the cat's striate cortex. Journal of Physiology (London) 283, 5377.

J.A. Movshon , I.D. Thompson & D.J. Tolhurst (1978c). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. Journal of Physiology (London) 283, 101120.

P.C. Murphy & A.M. Sillito (1987). Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329, 727729.

J.J. Nelson & B.J. Frost (1978). Orientation-selective inhibition from beyond the classic visual receptive field. Brain Research 139, 359365.

I. Ohzawa , G. Sclar & R.D. Freeman (1982). Contrast gain control in the cat visual cortex. Nature 298, 266268.

J.D. Pettigrew , T. Nikara & P.O. Bishop (1968). Responses to moving slits by single units in cat striate cortex. Experimental Brain Research 6, 373390.

D.A. Pollen , B.W. Andrews & S.E. Feldon (1978). Spatial-frequency selectivity of periodic complex cells in the visual cortex of the cat. Vision Research 18, 665682.

R.C. Reid , R.E. Soodak & R.M. Shapley (1987). Linear mechanisms of directional selectivity in simple cells of cat striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 84, 87408744.

D. Rose (1977). Responses of single units in cat visual cortex to moving bars of light as a function of bar length. Journal of Physiology (London) 271, 123.

G. Sclar & R.D. Freeman (1982). Orientation selectivity of the cat's striate cortex is invariant with stimulus contrast. Experimental Brain Research 46, 457461.

G. Sclar , J.H.R. Maunsell & P. Lennie (1990). Coding of image contrast in central visual pathways of the macaque monkey. Vision Research 30, 110.

R. Shapley & C. Enroth-Cugell (1984). Visual adaptation and retinal gain control. Progress in Retinal Research 3, 263346.

H. Spekreuse & T.J.T.P. van den Berg (1971). Interaction between colour and spatial coded processes converging to retinal ganglion cells in goldfish. Journal of Physiology (London) 215, 679692.

G. Sperling & M.M. Sondhi (1968). Model for visual luminance discrimination and flicker detection. Journal of the Optical Society of America 58, 11331145.

K. Tanaka (1985). Organization of geniculate inputs to visual cortical cells in the cat. Vision Research 25, 357364.

D.J. Tolhurst & A.F. Dean (1987). Spatial summation by simple cells in the striate cortex of the cat. Experimental Brain Research 66, 607620.

D.J. Tolhurst , N.S. Walker , I.D. Thompson & A.F. Dean (1980). Nonlinearities of temporal summation in neurones in area 17 of the cat. Experimental Brain Research 38, 431435.

S. Ullman & G. Schechtman (1982). Adaptation and gain normalization. Proceedings of the Royal Society B (London) 216, 299313.

T.R. Vidyasaoar (1990). Pattern adaptation in cat visual cortex is a cooperative phenomenon. Neuroscience 36, 175179.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 79 *
Loading metrics...

Abstract views

Total abstract views: 548 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th June 2017. This data will be updated every 24 hours.