Skip to main content
    • Aa
    • Aa

Optogenetic approaches to retinal prosthesis


The concept of visual restoration via retinal prosthesis arguably started in 1992 with the discovery that some of the retinal cells were still intact in those with the retinitis pigmentosa disease. Two decades later, the first commercially available devices have the capability to allow users to identify basic shapes. Such devices are still very far from returning vision beyond the legal blindness. Thus, there is considerable continued development of electrode materials, and structures and electronic control mechanisms to increase both resolution and contrast. In parallel, the field of optogenetics—the genetic photosensitization of neural tissue holds particular promise for new approaches. Given that the eye is transparent, photosensitizing remaining neural layers of the eye and illuminating from the outside could prove to be less invasive, cheaper, and more effective than present approaches. As we move toward human trials in the coming years, this review explores the core technological and biological challenges related to the gene therapy and the high radiance optical stimulation requirement.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Optogenetic approaches to retinal prosthesis
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Optogenetic approaches to retinal prosthesis
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Optogenetic approaches to retinal prosthesis
      Available formats
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.
Corresponding author
*Address correspondence to: Dr. Patrick Degenaar, School of EEE, Newcastle University, Newcastle upon Tyne NE7 7YL, UK. E-mail:
Hide All
A.K. Ahuja & M.R. Behrend (2013). The Argus (TM) II retinal prosthesis: Factors affecting patient selection for implantation. Progress in Retinal and Eye Research 36, 123.

W.I. Al-Atabany , M.A. Memon , S.M. Downes & P.A. Degenaar (2010 a). Designing and testing scene enhancement algorithms for patients with retina degenerative disorders. Biomedical Engineering Online 9, 27.

W.I. Al-Atabany , T. Tong & P.A. Degenaar (2010 b). Improved content aware scene retargeting for retinitis pigmentosa patients. Biomedical Engineering Online 9, 52.

J.G. Bernstein & E.S. Boyden (2011). Optogenetic tools for analyzing the neural circuits of behavior. Trends in Cognitive Sciences 15, 592600.

A. Bi , J. Cui , Y.P. Ma , E. Olshevskaya , M. Pu , A.M. Dizhoor & Z.H. Pan (2006). Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 2333.

E.S. Boyden , F. Zhang , E. Bamberg , G. Nagel & K. Deisseroth (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience 8, 12631268.

S.E. Boye , S.L. Boye , A.S. Lewin & W.W. Hauswirth (2013). A comprehensive review of retinal gene therapy. Molecular Therapy 21, 509519.

V. Busskamp , J. Duebel , D. Balya , M. Fradot , T.J. Viney , S. Siegert , A.C. Groner , E. Cabuy , V. Forster , M. Seeliger , M. Biel , P. Humphries , M. Paques , S. Mohand-Said , D. Trono , K. Deisseroth , J.A. Sahel , S. Picaud & B. Roska (2010). Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413417.

M. Carandini , J.B. Demb , V. Mante , D.J. Tolhurst , Y. Dan , B.A. Olshausen , J.L. Gallant & N.C. Rust (2005). Do we know what the early visual system does?. The Journal of Neuroscience 25, 1057710597.

C.L. Cepko (2012). Emerging gene therapies for retinal degenerations. The Journal of Neuroscience 32, 64156420.

E.J. Chichilnisky (2001). A simple white noise analysis of neuronal light responses. Network 12, 199213.

P. Degenaar , N. Grossman , M.A. Memon , J. Burrone , M. Dawson , E. Drakakis , M. Neil & K. Nikolic (2009). Optobionic vision—a new genetically enhanced light on retinal prosthesis. Journal of Neural Engineering 6, 035007.

W.H. Dobelle , M.G. Mladejovsky & J.P. Girvin (1974). Artificial vision for the blind: Electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183, 440444.

J.D. Dorn , A.K. Ahuja , A. Caspi , L. da Cruz , G. Dagnelie , J.A. Sahel , R.J. Greenberg & M.J. McMahon (2013). The detection of motion by blind subjects with the epiretinal 60-electrode (Argus II) retinal prosthesis. JAMA Ophthalmology 131, 183189.

M.M. Doroudchi , K.P. Greenberg , J. Liu , K.A. Silka , E.S. Boyden , J.A. Lockridge , A.C. Arman , R. Janani , S.E. Boye , S.L. Boye , G.M. Gordon , B.C. Matteo , A.P. Sampath , W.W. Hauswirth & A. Horsager (2011). Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Molecular Therapy 19, 12201229.

M. Eiraku & Y. Sasai (2012). Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nature Protocols 7, 6979.

L. Fenno , O. Yizhar & K. Deisseroth (2011). The development and application of optogenetics. Annual Review of Neuroscience 34, 389412.

P.G. Finlayson & R. Iezzi (2010). Glutamate stimulation of retinal ganglion cells in normal and S334ter-4 rat retinas: A candidate for a neurotransmitter-based retinal prosthesis. Investigative Ophthalmology & Visual Science 51, 36193628.

R.L. Fork (1971). Laser stimulation of nerve cells in aplysia. Science 171, 907908.

N. Grossman , K. Nikolic , C. Toumazou & P. Degenaar (2011). Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Transactions on Biomedical Engineering 58, 17421751.

K. Gugleta (2010). Topical carbonic anhydrase inhibitors and visual function in glaucoma and ocular hypertension. Current Medical Research and Opinion 26, 12551267.

L.A. Gunaydin , O. Yizhar , A. Berndt , V.S. Sohal , K. Deisseroth & P. Hegemann (2010). Ultrafast optogenetic control. Nature Neuroscience 13, 387392.

J. Himber , V.L. Sallee , G. Andermann , M. Bouzoubaa , G. Leclerc & L. De Santis (1987). Effects of topically applied falintolol: A new beta-adrenergic antagonist for treatment of glaucoma. Journal of Ocular Pharmacology 3, 111120.

F.G. Holz , S. Schmitz-Valckenberg & M. Fleckenstein (2014). Recent developments in the treatment of age-related macular degeneration. The Journal of Clinical Investigation 124, 14301438.

Y. Huang , E.M. Drakakis , P. Degenaar & C. Toumazou (2009). A CMOS image sensor with light-controlled oscillating pixels for an investigative optobionic retinal prosthesis system. Microelectronics Journal 40, 12021211.

S.G. Jacobson , A. Sumaroka , X. Luo & A.V. Cideciyan (2013). Retinal optogenetic therapies: Clinical criteria for candidacy. Clinical Genetics 84, 175182.

K. Kamimura , T. Suda , G. Zhang & D. Liu (2011). Advances in gene delivery systems. Pharmaceutical Medicine 25, 293306.

S. Kleinlogel , K. Feldbauer , R.E. Dempski , H. Fotis , P.G. Wood , C. Bamann & E. Bamberg (2011). Ultra light sensitive and fast neuronal activation with the Ca(2)+-permeable channelrhodopsin CatCh. Nature Neuroscience 14, 513518.

M. Koyanagi , E. Takada , T. Nagata , H. Tsukamoto & A. Terakita (2013). Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. Proceedings of the National Academy of Sciences of the United States of America 110, 49985003.

P.S. Lagali , D. Balya , G.B. Awatramani , T.A. Münch , D.S. Kim , V. Busskamp , C.L. Cepko & B. Roska (2008). Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nature Neuroscience 11, 667675.

B. Lin , A. Koizumi , N. Tanaka , S. Panda & R.H. Masland (2008). Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proceedings of the National Academy of Sciences of the United States of America 105, 1600916014.

J.Y. Lin , P.M. Knutsen , A. Muller , D. Kleinfeld & R.Y. Tsien (2013). ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience 16, 14991508.

J.Y. Lin , M. Lin , P. Steinbach & R. Tsien (2009). Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophysical Journal 96, 18031814.

C.A. Mead & M.A. Mahowald (1988) A silicon model of early visual processing. Neural Networks 1, 9197.

M. Meister & M.J. Berry Ii (1999). The neural code of the retina. Neuron 22, 435450.

Z. Melyan , E.E. Tarttelin , J. Bellingham , R.J. Lucas & M.W. Hankins (2005). Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741745.

T. Miyashita , Y.R. Shao , J. Chung , O. Pourzia & D. Feldman (2013). Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Frontiers in Neural Circuits 7, 00008.

J.D. Moss , J. Austin , J. Salley , J. Coats , K. Williams & E.R. Muth (2011). The effects of display delay on simulator sickness. Displays 32, 159168.

G. Nagel , T. Szellas , W. Huhn , S. Kateriya , N. Adeishvili , P. Berthold , D. Ollig , P. Hegemann & E. Bamberg (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America 100, 1394013945.

S. Nirenberg & C. Pandarinath (2012). Retinal prosthetic strategy with the capacity to restore normal vision. Proceedings of the National Academy of Sciences of the United States of America 109, 1501215017.

R.A. Normann , B.A. Greger , P. House , S.F. Romero , F. Pelayo & E. Fernandez (2009). Toward the development of a cortically based visual neuroprosthesis. Journal of Neural Engineering 6, 035001.

D. Oesterhe & W. Stoecken (1973). Functions of a new photoreceptor membrane. Proceedings of the National Academy of Sciences of the United States of America 70, 28532857.

A.M. Packer , B. Roska & M. Häusser (2013). Targeting neurons and photons for optogenetics. Nature Neuroscience 16, 805815.

L. Paninski (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network 15, 243262.

L. Paninski , J.W. Pillow & J. Lewi (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. Progress in Brain Research 165, 493507.

J.S. Pezaris & R.C. Reid (2007). Demonstration of artificial visual percepts generated through thalamic microstimulation. Proceedings of the National Academy of Sciences of the United States of America 104, 76707675.

S. Picaud & J-A. Sahel (2014). Retinal prostheses: Clinical results and future challenges. Comptes Rendus Biologies 337, 214222.

I. Reutsky-Gefen , L. Golan , N. Farah , A. Schejter , L. Tsur , I. Brosh & S. Shoham (2013). Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nature Communications 4, 1509.

R.W. Rodieck (1965). Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research 5, 583601.

A. Santos , M.S. Humayan , E. de Juan Jr., R.J. Greenberg , M.J. Marsh , I.B. Klock & A.H. Milam (1997). Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Archives of Ophthalmology 115, 511515.

S. Shoham , D.H. O'Connor , D.V. Sarkisov & S.S.H. Wang (2005). Rapid neurotransmitter uncaging in spatially defined patterns. Nature Methods 2, 837843.

R. Simo & C. Hernandez (2014). Neurodegeneration in the diabetic eye: New insights and therapeutic perspectives. Trends Endocrinology and Metabolism 25, 2333.

S.F. Stasheff (2008). Emergence of sustained spontaneous hyperactivity and temporary preservation of off responses in ganglion cells of the retinal degeneration (rd1) mouse. Journal of Neurophysiology 99, 14081421.

S.F. Stasheff , M. Shankar & M.P. Andrews (2011). Developmental time course distinguishes changes in spontaneous and light-evoked retinal ganglion cell activity in rd1 and rd10 mice. Journal of Neurophysiology 105, 30023009.

K. Stingl , K.U. Bartz-Schmidt , D. Besch , A. Braun , A. Bruckmann , F. Gekeler , U. Greppmaier , S. Hipp , G. Hörtdörfer , C. Kernstock , A. Koitschev , A. Kusnyerik , H. Sachs , A. Schatz , K.T. Stingl , T. Peters , B. Wilhelm & E. Zrenner (2013). Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proceedings of the Royal Society B: Biological Sciences 280, 20130077.

H. Tomita , E. Sugano , H. Isago , T. Hiroi , Z. Wang , E. Ohta & M. Tamai (2010). Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Experimental Eye Research 90, 429436.

M. van Lookeren Campagne , J. LeCouter , B.L. Yaspan & W. Ye (2014). Mechanisms of age-related macular degeneration and therapeutic opportunities. Journal of Pathology 232, 151164.

J.D. Weiland , A.K. Cho & M.S. Humayun (2011). Retinal prostheses: Current clinical results and future needs. Ophthalmology 118, 22272237.

F. Zhang , J. Vierock , O. Yizhar , L.E. Fenno , S. Tsunoda , A. Kianianmomeni , M. Prigge , A. Berndt , J. Cushman , J. Polle , J. Magnuson , P. Hegemann & K. Deisseroth (2011). The microbial opsin family of optogenetic tools. Cell 147, 14461457.

Y. Zhang , E. Ivanova , A. Bi & Z.H. Pan (2009). Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. Journal of Neuroscience 29, 91869196.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 68
Total number of PDF views: 461 *
Loading metrics...

Abstract views

Total abstract views: 821 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.