Skip to main content Accesibility Help
×
×
Home

A psychophysically motivated model for two-dimensional motion perception

  • Hugh R. Wilson (a1), Vincent P. Ferrera (a1) and Christopher Yo (a1)
Abstract

A quantitative model is developed to predict the perceived direction of moving two-dimensional patterns. The model incorporates both a simple motion energy pathway and a “texture boundary motion” pathway that incorporates response squaring before the extraction of motion energy. These pathways correspond to Fourier and non-Fourier motion pathways and are hypothesized to reflect processing in the VI-MT and V1-V2-MT pathway, respectively. A cosine-weighted sum of these pathways followed by competitive feedback inhibition accurately predicts the perceived direction for patterns composed of two cosine gratings at different orientations (“plaids”). The model also predicts direction discrimination, differences between foveal and peripheral viewing, changes in perceived direction with exposure duration, motion masking, and motion transparency.

Copyright
References
Hide All
Adelson, E.H. & Movshon, J.A. (1982). Phenomenal coherence of moving visual patterns. Nature 300, 523525.
Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2, 284299.
Albrecht, D.G. & Geisler, W.S. (1991). Motion selectivity and the contrast response function of simple cells in the visual cortex. Visual Neuroscience 7, 531546.
Albrecht, D.G. & Hamilton, D.B. (1982). Striate cortex of monkey and cat: Contrast response function. Journal of Neurophysiology 48, 217237.
Albright, T.D., Desimone, R. & Gross, C.G. (1984). Columnar organization of directionally selective cells in visual area MT of the macaque. Journal of Neurophysiology 51, 1631.
Anstis, S.M. & Mather, G. (1985). Effects of luminance and contrast on direction of ambiguous apparent motion. Perception 14, 167179.
Bergen, J.R. & Landy, M.S. (1991). Computational modeling of visual texture segregation. In Computational Models of Visual Processing, ed. Landy, M. & Movshon, J.A., pp. 253271. MIT Press.
Bergen, J.R. & Wilson, H.R. (1985). Prediction of flicker sensitivities from temporal threepulse data. Vision Research 25, 577582.
Chubb, C. & Sperling, G. (1988). Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. Journal of the Optical Society of America A 5, 19862007.
Chubb, C. & Sperling, G. (1989). Two motion perception mechanisms revealed through distancedriven reversal of apparent motion. Proceedings of the National Academy of Sciences of the U.S.A. 86, 29852989.
Cormack, R., Blake, E. & Hiris, E. (1992). Misdirected visual motion in the peripheral visual field. Vision Research 32, 7380.
Derrington, A.M. & Badcock, D.R. (1985). Separate detectors for simple and complex grating patterns? Vision Research 25, 18691878.
Derrington, A. & Suero, M. (1991). Motion of complex patterns is computed from the perceived motions of their components. Vision Research 31, 139149.
Deyoe, E.A. & Vanessen, D.C. (1985). Segregation of efferent connec tions and receptive field properties in visual area V2 of the macaque. Nature 317, 5861.
Emerson, R.C., Bergen, J.R. & Adelson, E.H. (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Research 32, 203218.
Feldman, J.A. & Ballard, D.H. (1982). Connectionist models and their properties. Cognitive Science 6, 205254.
Felleman, D.J. & Vanessen, D.C. (1987). Receptive field properties of neurons in area V3 o f macaque monkey extrastriate cortex. Journal of Neurophysiology 57, 889920.
Ferrera, V.P. & Wilson, H.R. (1987). Direction Specific Masking And The Analysis Of Motion In Two Dimensions. Vision Research 27, 17831796.
Ferrera, V.P. & Wilson, H.R. (1990). Perceived direction of moving two-dimensional patterns. Vision Research 30, 273287.
Ferrera, V.P. & Wilson, H.R. (1991). Perceived speed of moving twodimensional patterns. Vision Research 31, 877893.
Graham, N. (1991). Complex channels, early local nonlinearities, and normalization in texture segregation. In Computational Models of Visual Processing, ed. Landy, M. & Movshon, J.A., pp. 273290. Cambridge, Massachusetts: MIT Press.
Grossberg, S. (1991). Why do parallel cortical systems exist for the perception of static form and moving form? Perception and Psychophysics 49, 117141.
Heeger, D.H. (1987). Model for the extraction of image flow. Journal of the Optical Society of America A 4, 14551471.
Heeger, D.J. (1991). Nonlinear model of neural responses in cat visual cortex. In Computational Models of Visual Processing, ed. Landy, M. & Movshon, J.A., pp. 119133. Cambridge, Massachusetts: MIT Press.
Hennwg, G.B., Hertz, B.G. & Broadbent, D.E. (1975). Some exper iments bearing on the hypothesis that the visual system analyzes spatial patterns in independent bands of spatial frequency. Vision Research 15, 887897.
Hildreth, E.G. (1984). The Measurement of Visual Motion. Cambridge, Massachusetts: MIT Press.
Krubitzer, L.A. & Kaas, J.H. (1989). Cortical integration of parallel pathways in the visual system of primates. Brain Research 478, 161165.
Krubitzer, L. & Kaas, J. (1990). Convergence of processing channels in the extrastriate cortex of monkeys. Visual Neuroscience 5, 609613.
Landy, M.S. & Bergen, J.R. (1991). Texture segregation and orienta tion gradient. Vision Research 31, 679691.
Marr, D. (1982). Vision: A Computational Investigation into the Hu man Representation and Processing of Visual Information. San Francisco, California: W.H. Freeman.
Maunsell, J.H.R. & Newsome, W.T. (1987). Visual processing in mon key extrastriate cortex. Annual Review of Neuroscience 10, 363401.
Maunsell, J.H.R., Nealey, T.A. & Depriest, D.D. (1990). Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. Journal of Neu roscience 10, 33233334.
Merigan, W.H., Pasternak, T., Polashenski, W. & Maunsell, J.H.R. (1991). Permanent deficits in speed discrimination after MT/MST lesions in a macaque monkey. Investigative Ophthalmol ogy and Visual Science (Suppl.) 32, 824.
Movshon, J.A. (1975). The velocity tuning of single units in cat striate cortex. Journal of Physiology 249, 445468.
Movshon, J.A., Adelson, E.H., Gizzi, M.S. & Newsome, W.T. (1986). The analysis of moving visual patterns. In Pattern Recognition Mechanisms, ed. Chagas, C., Gattass, R. & Gross, C., pp. 117151. New York: Springer-Verlag.
Nawrot, M. & Sekuler, R. (1990). Assimilation and contrast in mo tion perception: Explorations in Cooperativity. Vision Research 30, 14391451.
Newsome, W.T., Wurtz, R.H., Dursteler, M.R. & Mikami, A. (1985). Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. Journal of Neuroscience 5, 825840.
Orban, G.A., Kennedy, H. & Maes, H. (1981). Response to movement of neurons in areas 17 and 18 of the cat: Velocity sensitivity. Journal of Neurophysiology 45, 10431058.
Pantle, A. & Picciano, L. (1976). A multistable movement display: Evidence for two separate motion systems in human vision. Science 193, 500502.
Pasternak, T., Maunsell, J.H.R., Polashenski, W. & Merigan, W.H. (1991). Deficits in global motion perception after MT/MST lesions in a macaque. Investigative Ophthalmology and Visual Science (Suppl.) 32, 824.
Perrone, J.A. (1990). Simple technique for optical flow estimation. Journal of the Optical Society of America A 7, 264278.
Philips, G.C. & Wilson, H.R. (1984). Orientation bandwidths of spa tial mechanisms measured by masking. Journal of the Optical So ciety of America A 1, 226232.
Ramachandran, V.S. & Inada, V. (1985). Spatial phase and frequency in motion capture of random-dot patterns. Spatial Vision 1, 5767.
Ramachandran, V.S., Inada, V. & Kiama, G. (1986). Perception of illusory occlusion in apparent motion. Vision Research 26, 17411749.
Ramachandran, V.S. & Cavanagh, P. (1987). Motion capture anisotropy. Vision Research 27, 97106.
Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In Sensory Communication, ed. Rosenblith, W.A., pp. 303317. New York: Wiley.
Riggs, L.A. & Day, R.H. (1980). Visual aftereffects derived from in spection of orthogonally moving patterns. Science 208, 416418.
Rodman, H.R. & Albright, T.D. (1989). Single unit analysis of pat ternmotion selective properties in the middle temporal visual area (MT). Experimental Brain Research 75, 5364.
Salzman, CD., Britten, K.H. & Newsome, W.T. (1990). Cortical microstimulation influences perceptual judgments of motion direction. Nature 346. 174177.
Schouten, J.F. (1967). Subjective stroboscopy and a model of visual movement detectors. In Models for the Perception of Speech and Visual Form, ed. Wathen-Dunn, W., pp. 4455. Cambridge, Massachusetts: MIT Press.
Snowden, R.J., Treue, S., Erickson, R.G. & Andersen, R.A. (1991). The response of area MT and VI neurons to transparent motion. Journal of Neuroscience 11, 27682785.
Stone, L.S., Watson, A.B. & Mulligan, J.B. (1990). Effect of contrast on the perceived direction of a moving plaid. Vision Research 30, 10491067.
Turano, K. & Pantle, A. (1989). On the mechanism that encodes the movement of contrast variations: Velocity discrimination. Vision Re search 29, 207221.
Turano, K. (1991). Evidence for a common motion mechanism of lu minance and contrast modulated patterns: Selective adaptation. Perception 20, 455466.
Vanessen, D.C. (1985). Functional organization of primate visual cortex. In Cerebral Cortex, vol. 3, ed. Peters, A. & Jones, E.G., pp. 259329. New York: Plenum.
Vansanten, J.P.H. & Sperling, G. (1984). Temporal covariance model of human motion perception. Journal of the Optical Society of America A 1, 451473.
Von Der Heydt, R., Peterhans, E. & Baumgartner, G. (1984). Illusory contours and cortical neuron responses. Science 224, 12601262.
Von Der Heydt, R. & Peterhans, E. (1989). Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity. Journal of Neuroscience 9, 17311748.
Wallach, H. (1935). Uber visuell wahrgenommene bewegungsrichtung. Psychologische Forschung 20, 325380.
Williams, D., Phillips, G. & Sekuler, R. (1986). Hysteresis in the per ception of motion direction as evidence for neural cooperativity. Nature, 324, 253255.
Williams, D. & Phillips, G. (1987). Cooperative phenomena in the per ception of motion direction. Journal of the Optical Society of America A 4, 878885.
Wilson, H.R. & Cowan, J.D. (1972). Excitatory and inhibitory inter actions in localized populations of modelneurons. Biophysical Journal 12, 124.
Wilson, H.R. & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 5580.
Wilson, H.R. (1977). Hysteresis in binocular grating perception: Contrast effects. Vision Research 17, 843851.
Wilson, H.R. (1980a). Spatiotemporal characterization of a transient mechanism in the human visual system. Vision Research 20, 443452.
Wilson, H.R. (1980b). A transducer function for threshold and suprathreshold human vision. Biological Cybernetics 38, 171178.
Wilson, H.R., McFarlane, D.K. & Phillips, G.C. (1983). Spatial fre quency tuning of orientation selective units estimated by oblique masking. Vision Research 23, 873882.
Wilson, H.R. & Gelb, D.J. (1984). Modified line element theory for spatial frequency and width discrimination. Journal of the Optical Society of America A 1, 124131.
Wilson, H.R. (1985). A model for direction selectivity in threshold mo tion perception. Biological Cybernetics 51, 213222.
Wilson, H.R. (1990). Psychophysics of contrast gain control. Investi gative Ophthalmology and Visual Science (Suppl.) 31, 430.
Wilson, H.R. (1991). Psychophysical models of spatial vision and hyperacuity. In Spatial Form Vision, ed. Regan, D., pp. 6486. New York: Macmillan.
Wilson, H.R. & Richards, W.A. (1992). Curvature and separation dis crimination at texture boundaries (submitted for publication).
Wilson, H.R. & Mast, R. (1992). Illusory motion of texture bound aries. Vision Research (in press).
Yo, C. & Wilson, H.R. (1992u). Perceived direction of moving twodimensional patterns depends on duration, contrast, and eccentricity. Vision Research 32, 135147.
Yo, C. & Wilson, H.R. (1992b). Moving 2-D patterns capture the perceived direction of both lower and higher spatial frequencies. Vision Research (in press).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed