Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T12:32:59.325Z Has data issue: false hasContentIssue false

A reassessment of the lower visual field map in striate-recipient lateral suprasylvian cortex

Published online by Cambridge University Press:  02 June 2009

Helen Sherk
Affiliation:
Department of Biological Structure, University of Washington, Seattle
Kathleen A. Mulligan
Affiliation:
Department of Biological Structure, University of Washington, Seattle

Abstract

Lateral suprasylvian visual cortex in the cat has been studied extensively, but its retinotopic organization remains controversial. Although some investigators have divided this region into many distinct areas, others have argued for a simpler organization. A clear understanding of the region’s retinotopic organization is important in order to define distinct areas that are likely to subserve unique visual functions. We therefore reexamined the map of the lower visual field in the striate-recipient region of lateral suprasylvian cortex, a region we refer to as the lateral suprasylvian area, LS.

A dual mapping approach was used. First, receptive fields were plotted at numerous locations along closely spaced electrode penetrations; second, different anterograde tracers were injected at retinotopically identified sites in area 17, yielding patches of label in LS. To visualize the resulting data, suprasylvian cortex was flattened with the aid of a computer.

Global features of the map reported in many earlier studies were confirmed. Central visual field was represented posteriorly, and elevations generally shifted downward as one moved anteriorly. Often (though not always) there was a progression from peripheral locations towards the vertical meridian as the electrode moved down the medial suprasylvian bank.

The map had some remarkable characteristics not previously reported in any map in the cat. The vertical meridian’s representation was split into two pieces, separated by a gap, and both pieces were partially internalized within the map. Horizontal meridian occupied the gap. The area centralis usually had a dual representation along the posterior boundary of the lower field representation, and other fragments of visual field were duplicated as well. Finally, magnification appeared to change abruptly and unexpectedly, so that compressed regions of representation adjoined expanded regions. Despite its complexity, we found the map to be more orderly than previously thought. There was no clearcut retinotopic basis on which to subdivide LS’s lower field representation into distinct areas.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albus, K. (1975). A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography. Experimental Brain Research 24, 159179.CrossRefGoogle ScholarPubMed
Allman, J.M. & Kaas, J.H. (1974). The organization of the second visual area (VII) in the owl monkey: A second-order transformation of the visual hemifield. Brain Research 76, 247265.CrossRefGoogle Scholar
Allman, J.M. & Kaas, J.H. (1975). The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). Brain Research 100, 473487.CrossRefGoogle ScholarPubMed
Blakemore, C. & Zumbroich, T.J. (1987). Stimulus selectivity and functional organization in the lateral suprasylvian visual cortex of the cat. Journal of Physiology (London) 389, 569603.CrossRefGoogle ScholarPubMed
Burkhalter, A., Felleman, D.J., Newsome, W.T. & Van Essen, D.C. (1986). Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex. Vision Research 26, 6380.CrossRefGoogle ScholarPubMed
Camarda, R. & Rizzolatti, G. (1976). Visual receptive fields in the lateral suprasylvian area (Clare-Bishop area) of the cat. Brain Research 101, 427443.CrossRefGoogle ScholarPubMed
Desimone, R. & Ungerleider, L.G. (1986). Multiple visual areas in the caudal superior temporal sulcus of the macaque. Journal of Comparative Neurology 248, 164189.CrossRefGoogle ScholarPubMed
Djavadian, R.L. & Harutiunian-Kozak, B.A. (1983). Retinotopic organization of the lateral suprasylvian area of the cat. Ada Neurobi-ologiae Experimentalis 43, 251262.Google ScholarPubMed
Fiorani, M. Jr, Gattass, R., Rosa, M.G.P. & Sousa, A.P.B. (1989). Visual area MT in the Cebus monkey: Location, visuotopic organization, and variability. Journal of Comparative Neurology 287, 98118.CrossRefGoogle ScholarPubMed
Gattass, R. & Gross, C.G. (1981). Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. Journal of Neurophysiology 46, 621638.CrossRefGoogle ScholarPubMed
Gilbert, CD. & Kelly, J.P. (1975). The projections of cells in different layers of the cat’s visual cortex. Journal of Comparative Neurology 163, 81105.CrossRefGoogle ScholarPubMed
Gizzi, M.S., Katz, E., Schumer, R.A. & Movshon, J.A. (1990). Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. Journal of Neurophysiology 63, 15291543.CrossRefGoogle ScholarPubMed
Grant, S. & Shipp, S. (1991). Visuotopic organization of the lateral suprasylvian area and of an adjacent area of the ectosylvian gyrus of cat cortex: A physiological and connectional study. Visual Neuro-science 6, 315338.CrossRefGoogle ScholarPubMed
GraybieL, A.M. & Berson, D.M. (1981). On the relation between transthalamic and transcortical pathways in the visual system. In The Organization of the Cerebral Cortex, ed. Schmttt, F.O., Worden, E.G. & Dennis, E, pp. 286319. Cambridge, Massachusetts: MIT Press.Google Scholar
Guedes, R., Watanabe, S. & Creutzfeldt, O.D. (1983). Functional role of association fibres for a visual association area: The posterior suprasylvian sulcus of the cat. Experimental Brain Research 49, 1327.CrossRefGoogle ScholarPubMed
Horton, J.C. (1984). Cytochrome-oxidase patches –a new cytoarchi-tectonic feature of monkey visual cortex. Philosophical Transactions of the Royal Society B (London) 304, 199253.Google ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28, 229289.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1969). Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat. Journal of Physiology (London) 202, 251260.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van Essen, D.C. (1987). Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology 266, 535555.CrossRefGoogle ScholarPubMed
McIlwain, J.T. (1983). Representation of the visual streak in visuotopic maps of the cat’s superior colliculus: influence of the mapping variable. Vision Research 23, 507516.CrossRefGoogle ScholarPubMed
Mesulam, M.-M. (1976). The blue reaction product in horseradish per-oxidase neurohistochemistry: Incubation parameters and visibility. Journal of Histochemistry and Cytochemistry 24, 12731280.CrossRefGoogle Scholar
Montero, V.M. (1980). Patterns of connections from the striate cortex to cortical visual areas in superior temporal sulcus of macaque and middle temporal gyrus of owl monkey. Journal of Comparative Neurology 189, 4555.CrossRefGoogle ScholarPubMed
Montero, V.M. (1981). Topography of the cortico-cortical connections from the striate cortex in the cat. Brain, Behavior and Evolution 18, 194218.CrossRefGoogle ScholarPubMed
Morrone, M.C., Stefano, M.Di & Burr, D.C. (1986). Spatial and temporal properties of neurons of the lateral suprasylvian cortex of the cat. Journal of Neurophysiology 56, 969986.CrossRefGoogle ScholarPubMed
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex. Journal of Physiology (London) 283, 101120.CrossRefGoogle ScholarPubMed
Olavarria, J. & Van Sluyters, R.C. (1985). Unfolding and flattening the cortex of gyrencephalic brains. Journal of Neuroscience Methods 15, 191202.CrossRefGoogle ScholarPubMed
Olson, C.R. & Graybiel, A.M. (1983). An outlying visual area in the cerebral cortex of the cat. Progress in Brain Research 58, 229238.Google ScholarPubMed
Olucha, E, Martinez-Garcia, F. & Lopez-Garcia, C. (1985). A new stabilizing agent for the tetramethylbenzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase (HRP). Journal of Neuroscience Methods 13, 131138.CrossRefGoogle ScholarPubMed
Otsuka, R. & Hassler, R. (1962). Uber Aufbau und Gliederung der corticalen Sehphare bei der Katze. Arch Psychiatrie und Zeitschrift ED. ges. Neurologie 203, 212234.CrossRefGoogle Scholar
Palmer, L.A., Rosenquist, A.C. & Tusa, R.J. (1978). The retinotopic organization of lateral suprasylvian visual areas in the cat. Journal of Comparative Neurology 177, 237256.CrossRefGoogle ScholarPubMed
Pettigrew, J.D., Cooper, M.L. & Blasdel, G.G. (1979). Improved use of tapetal reflection for eye-position monitoring. Investigative Ophthalmology and Visual Science 18, 490495.Google ScholarPubMed
Sanderson, K.J. (1971). The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. Journal of Comparative Neurology 143, 101118.CrossRefGoogle Scholar
Sherk, H. (1986 a). Location and connections of visual cortical areas in the cat’s suprasylvian sulcus. Journal of Comparative Neurology 247, 131.CrossRefGoogle ScholarPubMed
Sherk, H. (1986 b). Coincidence of patchy inputs from the lateral geniculate complex and area 17 to the cat’s Clare-Bishop area. Journal of Comparative Neurology 253, 105120.CrossRefGoogle Scholar
Sherk, H. (1992). Flattening the cerebral cortex by computer. Journal of Neuroscience Methods 41, 255267.CrossRefGoogle ScholarPubMed
Sherk, H. & Mulligan, K.A. (1992). Retinotopic order is surprisingly good within cell columns in the cat’s extrastriate cortex. Experimental Research (in press).Google Scholar
Sherk, H. & Ombrellaro, M. (1988). The retinotopic match between area 17 and its targets in visual suprasylvian cortex. Experimental Brain Research 72, 225236.CrossRefGoogle ScholarPubMed
Spear, P.D. (1991). Functions of extrastriate visual cortex. In The Neural Basis of Visual Function, ed. Leventhal, A., pp. 339370. Basingstoke, England: McMillan Press.Google Scholar
Spear, P.D. & Baumann, T.P. (1975). Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. Journal of Neurophysiology 38, 14031420.CrossRefGoogle ScholarPubMed
Symonds, L.L. & Rosenquist, A.C. (1984). Corticocortical connections among visual areas in the cat. Journal of Comparative Neurology 229, 138.CrossRefGoogle ScholarPubMed
Tong, L., Kalil, R.E. & Spear, P.D. (1982). Thalamic projections to visual areas of the middle suprasylvian sulcus in the cat. Journal of Comparative Neurology 212, 103117.CrossRefGoogle ScholarPubMed
Toyama, K., Fum, K. & Umetani, K. (1990). Functional differentiation between the anterior and posterior Clare-Bishop cortex of the cat. Experimental Brain Research 81, 221233.CrossRefGoogle ScholarPubMed
TurleIski, K. & Michalski, A. (1975). Clare-Bishop area in the cat: Location and retinotopic projection. Ada Neurobiologiae Experimentalist, 179188.Google Scholar
Tusa, R.J. & Palmer, L.A. (1980). Retinotopic organization of areas 20 and 21 in the cat. Journal of Comparative Neurology 193, 147164.CrossRefGoogle ScholarPubMed
Tusa, R.J., Palmer, L.A. & Rosenquist, A.C. (1978). The retinotopic organization of area 17. Journal of Comparative Neurology 177, 213236.CrossRefGoogle ScholarPubMed
Tusa, R.J., Rosenquist, A.C. & Palmer, L.A. (1979). Retinotopic organization of areas 18 and 19 in the cat. Journal of Comparative Neurology 185, 657678.CrossRefGoogle Scholar
Ungerleider, L.G. & Desimone, R. (1986). Projections to the superior temporal sulcus from the central and peripheral field representations of VI and V2. Journal of Comparative Neurology 248, 147163.CrossRefGoogle Scholar
Updyke, B.V. (1986). Retinotopic organization within the cat’s posterior suprasylvian sulcus and gyrus. Journal of Comparative Neurology 246, 265280.CrossRefGoogle ScholarPubMed
Van Essen, D.C., Maunsell, J.H.R. & Bixby, J.L. (1981). The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization. Journal of Comparative Neurology 199, 293326.CrossRefGoogle ScholarPubMed
Van Essen, D.C., Newsome, W.T., Maunsell, J.H.R. & Bixby, J.L. (1986). The projections from striate cortex (VI) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections. Journal of Comparative Neurology 244, 451480.CrossRefGoogle Scholar
Von Grunau, M.W., Zumbroich, T.J. & Poulin, C. (1987). Visual receptive-field properties in the posterior suprasylvian cortex of the cat: A comparison between the areas PMLS and PLLS. Vision Research 27, 343356.CrossRefGoogle Scholar
Wright, M.M. (1969). Visual receptive fields of cells in a cortical area remote from the striate cortex in the cat. Nature 223, 973975.CrossRefGoogle Scholar
Zeki, S.M. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology (London) 236, 549573.CrossRefGoogle ScholarPubMed
Zumbroich, T.J. & Blakemore, C. (1987). Spatial and temporal selectivity in the suprasylvian visual cortex of the cat. Journal of Neuroscience 7, 482500.CrossRefGoogle ScholarPubMed
Zumbroich, T.J., Von Grunau, M., Poulin, C. & Blakemore, C (1986). Differences of visual field representation in the medial and lateral banks of the suprasylvian cortex (PMLS/PLLS) of the cat. Experimental Brain Research 64, 7793.CrossRefGoogle ScholarPubMed