Skip to main content

Retinotopic organization of ferret suprasylvian cortex

  • GINA CANTONE (a1) (a2), JUN XIAO (a1) and JONATHAN B. LEVITT (a1) (a2)

The retinotopic organization of striate and several extrastriate areas of ferret cortex has been established. Here we describe the representation of the visual field on the Suprasylvian visual area (Ssy). This cortical region runs mediolaterally along the posterior bank of the suprasylvian sulcus, and is distinct from adjoining areas in anatomical architecture. The Ssy lies immediately rostral to visual area 21, medial to lateral temporal areas, and lateral to posterior parietal areas. In electrophysiological experiments we made extracellular recordings in adult ferrets. We find that single and multiunit receptive fields range in size from 2 deg × 4 deg to 21 deg × 52 deg. The total visual field representation in Ssy spans over 70 deg in azimuth in the contralateral hemifield (with a small incursion into the ipsilateral hemifield), and from +36 deg to −30 deg in elevation. There are often two representations of the horizontal meridian. Furthermore, the location of the transition from upper to lower fields varies among animals. General features of topography are confirmed in anatomical experiments in which we made tracer injections into different locations in Ssy, and determined the location of retrograde label in area 17. Both isoelevation and isoazimuth lines can span substantial rostrocaudal and mediolateral distances in cortex, sometimes forming closed contours. This topography results in cortical magnifications averaging 0.07 mm/deg in elevation and 0.06 mm/deg in azimuth; however, some contours can run in such a way that it is possible to move a large distance on cortex without moving in the visual field. Because of these irregularities, Ssy contains a coarse representation of the contralateral visual field.

Corresponding author
Address correspondence and reprint requests to: Jonathan B. Levitt, Department of Biology, City College of the City University of New York, 138th Street & Convent Avenue, Room J526, New York, NY 10031, USA. E-mail:
Hide All


Albright, T.D. & Desimone, R. (1987). Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Experimental Brain Research 65, 582592.
Albus, K. (1975). A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography. Experimental Brain Research 24, 159179.
Allman, J.M. & Kaas, J.H. (1971). Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Research 35, 89106.
Allman, J.M. & Kaas, J.H. (1974). The organization of the second visual area (V II) in the owl monkey: A second-order transformation of the visual hemifield. Brain Research 76, 247265.
Allman, J.M. & Kaas, J.H. (1975). The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). Brain Research 100, 473487.
Angelucci, A. & Bullier, J. (2003). Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? Journal of Physiology (Paris) 97, 141154.
Angelucci, A., Clasca, F., & Sur, M. (1996). Anterograde axonal tracing with the subunit B of cholera toxin: A highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. Neuroscience Methods 65, 101112.
Angelucci, A., Levitt, J.B., Walton, E.J., Hupé, J.M., Bullier, J., & Lund, J.S. (2002). Circuits for local and global signal integration in primary visual cortex. Journal of Neuroscience 22, 86338646.
Baker, J.F., Petersen, S.E., Newsome, W.T., & Allman, J.M. (1981). Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. Journal of Neurophysiology 45, 397416.
Baker, G.E., Thompson, I.D., Krug, K., Smyth, D., & Tolhurst, D.J. (1998). Spatial-frequency tuning and geniculocortical projections in the visual cortex (areas 17 and 18) of the pigmented ferret. European Journal of Neuroscience 10, 26572668.
Bullier, J., Hupé, J.M., James, A.C., & Girard, P. (2001). The role of feedback connections in shaping the responses of visual cortical neurons. In Progress in Brain Research, ed. Casanova, C. & Ptito, M., pp. 193204. Netherlands: Elsevier Science B.V.
Bullier, J., McCourt, M.E., & Henry, G.H. (1988). Physiological studies on the feedback connections to the striate cortex from cortical areas 18 and 19 of the cat. Experimental Brain Research 70, 9098.
Cantone, G., McFarlane, N., & Levitt, J.B. (2002). Corticocortical connections among ferret visual areas. Society for Neuroscience Abstracts 28, 159.3.
Cantone, G., Xiao, J., & Levitt, J.B. (2003). Retinotopic organization of ferret suprasylvian cortex. Society for Neuroscience Abstracts 29, 818.9.
Cantone, G., Xiao, J., McFarlane, N., & Levitt, J.B. (2005). Feedback connections to ferret striate cortex: Direct evidence for visuotopic convergence of feedback inputs. Journal of Comparative Neurology 487, 312331.
Cavanaugh, J.R., Bair, W., & Movshon, J.A. (2002). Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. Journal of Neurophysiology 88, 25472556.
Clare, M.H. & Bishop, G.H. (1954). Responses from an association area secondarily activated from optic cortex. Journal of Neurophysiology 17, 271277.
Daniel, P.M. & Whitteridge, D. (1961). The representation of the visual field on cerebral cortex in monkeys. Journal of Physiology (Paris) 159, 203201.
DeAngelis, G.C., Freeman, R.D., & Ohzawa, I. (1994). Length and width tuning of neurons in the cat's primary visual cortex. Journal of Neurophysiology 71, 347374.
Dinse, H.R. & Krüger, K. (1994). The timing of processing along the visual pathway in the cat. Neuroreport 5, 893897.
Dow, B.M., Snyder, A.Z., Vautin, R.G., & Bauer, R. (1981). Magnification factor and receptive field size in foveal striate cortex of the monkey. Experimental Brain Research 44, 213228.
Dreher, B., Wang, C., Turlejski, K.J., Djavadian, R.L., & Burke, W. (1996). Areas PMLS and 21a of cat visual cortex: Two functionally distinct areas. Cerebral Cortex 6, 585599.
Fiorani, M., Gattass, R., Rosa, M.G.P., & Sousa, A.P.B., (1989). Visual area MT in the Cebus monkey: Location, visiotopic organization, and variability. Journal of Comparative Neurology 287, 98118.
Gallyas, F. (1979). Silver staining of myelin by means of physical development. Neurology Research 1, 203209.
Gattass, R. & Gross, C.G. (1981). Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. Journal of Neurophysiology 46, 621638.
Gattass, R., Gross, C.G., & Sandell, J.H. (1981). Visual topography of V2 in the macaque. Journal of Comparative Neurology 201, 519539.
Gattass, R., Sousa, A.P., & Gross, C.G. (1988). Visuotopic organization and extent of V3 and V4 of the macaque. Journal of Neuroscience 8, 18311845.
Gilbert, C.D. & Wiesel, T.N. (1990). The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Research 30, 16891701.
Grant, S. & Shipp, S. (1991). Visuotopic organization of the lateral suprasylvian area and of an adjacent area of the ectosylvian gyrus of cat cortex: A physiological and connectional study. Visual Neuroscience 6, 315338.
Henderson, Z. (1985). Distribution of ganglion cells in the retina of adult pigmented ferret. Brain Research 358, 221228.
Hubel, D.H. & Wiesel, T.N. (1974). Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. Journal of Comparative Neurology 158, 295306.
Innocenti, G.M., Manger, P., Masiello, I., Colin, I., & Tettoni, L. (2002). Architecture and callosal connections of visual areas 17, 18, 19 and 21 in the ferret (Mustella putorius). Cerebral Cortex 12, 411422.
Katsuyama, N., Tsumoto, T., Sato, H., Fukuda, M., & Hata, Y. (1996). Lateral suprasylvian visual cortex is activated earlier than or synchronously with primary visual cortex in the cat. Neuroscience Research 24, 431435.
Knierim, J.J. & Van Essen, D.C. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology 67, 961980.
Law, M.I., Zahs, K., & Stryker, M. (1988). Organization of primary visual cortex (area 17) in the ferret. Journal of Comparative Neurology 278, 157180.
Levitt, J.B. & Lund, J.S. (1997). Contrast dependence of contextual effects in primate visual cortex. Nature 387, 7376.
Li, C. & Li, W. (1994). Extensive integration field beyond the classic receptive field of cat's striate cortical neurons-classification and tuning properties. Vision Research 34, 23372355.
Maffei, R. & Fiorentini, A. (1976). The unresponsive regions of visual cortical receptive fields. Vision Research 16, 11311139.
Manger, P., Kiper, D., Masiello, I., Murilo, L., Tettoni, L., Hunyadi, Z., & Innocenti, G.M. (2002a). The representation of the visual field in three extrastriate areas of the ferret (Mustella putorius). Cerebral Cortex 12, 411422.
Manger, P., Masiello, I., & Innocenti, G.M., (2002b). Areal organization of the posterior parietal cortex of the ferret (Mustella putorius). Cerebral Cortex 12, 12801297.
Manger, P.R., Nakamura, H., Valentiniene, S., & Innocenti, G.M. (2004). Visual areas in the lateral temporal cortex of the ferret (Mustela putorius). Cerebral Cortex 14, 676689.
Maunsell, J.H. & Van Essen, D.C. (1983a). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience 3, 25632586.
Maunsell, J.H. & Van Essen, D.C. (1983b). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology 49, 11271147.
Maunsell, J.H. & Van Essen, D.C. (1987). Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology 266, 535555.
Morgan, J.E., Henderson, Z., & Thompson, I.D. (1987). Retinal decussation patterns in pigmented and albino ferrets. Neuroscience 20, 519535.
Mulligan, K. & Sherk, H. (1993). A comparison of magnification functions in area 19 and the lateral suprasylvian visual area in the cat. Experimental Brain Research 97, 195208.
Palmer, L.A., Rosenquist, A.C., & Tusa, R.J. (1978). The retinotopic organization of lateral suprasylvian visual areas in the cat. Journal of Comparative Neurology 177, 237256.
Payne, B.R. (1993). Evidence for visual cortical area homologs in cat and macaque monkey. Cerebral Cortex 3, 125.
Philipp, R., Distler, C., & Hoffmann, K.P. (2006). A motion-sensitive area in ferret extrastriate visual cortex: An analysis in pigmented and albino animals. Cerebral Cortex, in press.
Pinon, M.C., Gattass, R., & Sousa, A.P. (1998). Area V4 in Cebus monkey: extent and visuotopic organization. Cerebral Cortex 8, 685701.
Raiguel, S.E., Lagae, L., Gulyas, B., & Orban, G.A. (1989). Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Research 493, 155159.
Salin, P.A., Girard, P., Kennedy, H., & Bullier, J. (1992). Visuotopic organization of corticocortical connections in the visual system of the cat. Journal of Comparative Neurology 320, 415434.
Sanides, F. & Hoffmann, J. (1969). Cyto- and myelo-architecture of the visual cortex of the cat and of the surrounding integration cortices. Journal of Hirnforschung 11, 79104.
Sceniak, M.P., Hawken, M.J., & Shapley, R. (2001). Visual spatial characterization of macaque V1 neurons. Journal of Neurophysiology 85, 18731887.
Sengpiel, F., Sen, A., & Blakemore, C. (1997). Characteristics of surround inhibition in the cat. Experimental Brain Research 116, 216228.
Sherk, H. (1986). Coincidence of patchy inputs from the lateral geniculate complex and area 17 to the cat's Clare-Bishop area. Journal of Comparative Neurology 253, 105120.
Sherk, H. & Mulligan, K.A. (1992). Retinotopic order is surprisingly good within cell columns in the cat's lateral suprasylvian cortex. Experimental Brain Research 91, 4660.
Sherk, H. & Mulligan, K.A. (1993). A reassessment of the lower visual field map in striate-recipient lateral suprasylvian cortex. Visual Neuroscience 10, 131158.
Sherk, H. & Ombrellaro, M. (1988). The retinotopic match between area 17 and its targets in visual suprasylvian cortex. Experimental Brain Research 72, 225236.
Shipp, S. & Grant, S. (1991). Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex. Visual Neuroscience 6, 339355.
Sillito, A.M., Grieve, K.L., Jones, H.E., Cudeiro, J., & Davis, J. (1995). Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492496.
Sincich, L.C., Park, K.F., Wohlgemuth, M.J., & Horton, J.C. (2004). Bypassing V1: A direct geniculate input to area MT. Nature Neuroscience 7, 11231128.
Spatz, W.B. (1977). Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in the marmoset Callithrix jacchus. Experimental Brain Research 27, 559572.
Tigges, J., Spatz, W.B., & Tiggs, M. (1973). Reciprocal point-to-point connections between parastriate and striate cortex in squirrel monkey (Saimiri). Journal Comparative Neurology 148, 481490.
Tusa, R.J. & Palmer, L.A. (1980). Retinotopic organization of areas 20 and 21 in the cat. Journal of Comparative Neurology 193, 147164.
Tusa, R.J., Palmer, L.A., & Rosenquist, A.C. (1978). The retinotopic organization of area 17 (striate cortex) in the cat. Journal of Comparative Neurology 177, 213235.
Tusa, R.J., Rosenquist, A.C., & Palmer, L.A. (1979). Retinotopic organization of areas18 and 19 in the cat. Journal of Comparative Neurology 185, 657678.
Van de Grind, W.A., Koenderink, J.J., Van Doorn, A.J., Milders, M.V., & Voerman, H. (1993). Inhomogeneity and anisotropies for motion detection in the monocular visual field of human observers. Vision Research 33, 10891107.
Van Essen, D.C. & Zeki, S.M. (1978). The topographical organization of rhesus monkey prestriate cortex. Journal of Physiology 277, 193226.
Van Essen, D.C., Maunsell, J.H., & Bixby, J.L. (1981). The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization. Journal of Comparative Neurology 199, 293326.
Vitek, D.J., Schall, J.D., & Leventhal, A.G. (1985). Morphology, central projections, and dendritic field orientation of retinal ganglion cells in the ferret. Journal of Comparative Neurology 241, 111.
Walker, G.A., Ohzawa, I., & Freeman, R. (1999). Asymmetric suppression outside the classic receptive field of the visual cortex. Journal of Neuroscience 19, 1053610553.
White, L.E., Basole, A., & Fitzpatrick, D. (2002). Functional and anatomical characterization of an extrastriate area in ferret visual cortex. Society for Neuroscience Abstracts 28, 159.5.
Wong-Riley, M. (1979). Reciprocal connections between striate and prestriate cortex in the squirrel monkey as demonstrated by combined peroxidase histochemistry and autoradiography. Brain Research 147, 159164.
Yu, H., Farley, B.J., Jin, D.Z., & Sur, M. (2005). The coordinated mapping of visual space and response features in visual cortex. Neuron 47, 267280.
Zeki, SM. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology 236, 549573.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 126 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th March 2018. This data will be updated every 24 hours.