Skip to main content Accessibility help
×
Home

Surface gloss and color perception of 3D objects

  • BEI XIAO (a1) and DAVID H. BRAINARD (a2)

Abstract

Two experiments explore the color perception of objects in complex scenes. The first experiment examines the color perception of objects across variation in surface gloss. Observers adjusted the color appearance of a matte sphere to match that of a test sphere. Across conditions we varied the body color and glossiness of the test sphere. The data indicate that observers do not simply match the average light reflected from the test. Indeed, the visual system compensates for the physical effect of varying the gloss, so that appearance is stabilized relative to what is predicted by the spatial average. The second experiment examines how people perceive color across locations on an object. We replaced the test sphere with a soccer ball that had one of its hexagonal faces colored. Observers were asked to adjust the match sphere have the same color appearance as this test patch. The test patch could be located at either an upper or lower location on the soccer ball. In addition, we varied the surface gloss of the entire soccer ball (including the test patch). The data show that there is an effect of test patch location on observers' color matching, but this effect is small compared to the physical change in the average light reflected from the test patch across the two locations. In addition, the effect of glossy highlights on the color appearance of the test patch was consistent with the results from Experiment 1.

Copyright

Corresponding author

Address correspondence and reprint requests to: Bei Xiao, Department of Neuroscience, School of Medicine, University of Pennsylvania, Suite 330C, 3401 Walnut Street, Philadelphia, PA 19104. E-mail: beixiao@mail.med.upenn.edu

References

Hide All
Arend, L.E. & Reeves, A. (1986). Simultaneous color constancy. Journal of Optical Society of America A 3, 17431751.
Bauml, K.H. (1999). Simultaneous color constancy: How surface color perception varies with the illuminant. Vision Research 39, 15311550.
Beck, J. (1964). The effect of gloss on perceived lightness. The American Journal of Psychology 77, 5463.
Bloj, M., Kersten, D. & Hurlbert, A.C. (1999). Perception of three-dimensional shape influences colour perception through mutual illumination. Nature 402, 877879.
Bloj, M., Ripamonti, C., Mitha, K., Hauck, R., Greenwald, S. & Brainard, D.H. (2004). An equivalent illuminant model for the effect of surface slant on perceived lightness. Journal of Vision 4, 735746.
Boyaci, H., Doerschner, K. & Maloney, L.T. (2004). Perceived surface color in binocularly viewed scenes with two light sources differing in chromaticity. Journal of Vision 4, 664679.
Boyaci, H., Maloney, L.T. & Hersh, S. (2003). The effect of perceived surface orientation on perceived surface albedo in binocularly viewed scenes. Journal of Vision 3, 541553.
Brainard, D.H. (1998). Color constancy in the nearly natural image. 2. Achromatic loci. Journal of the Optical Society of America A 15, 307325.
Brainard, D.H. (2003). Color appearance and color difference specification. In The Science of Color, ed. Shevell, S.K., pp. 191216. Washington, DC: Optical Society of America.
Brainard, D.H., Brunt, W.A. & Speigle, J.M. (1997). Color constancy in the nearly natural image. 1. Asymmetric matches. Journal of the Optical Society of America A 14, 20912110.
Brainard, D.H., Peili, D.G. & Robson, T. (2002). Display characterization. In Encyclopedia of Imaging Science and Technology, ed. Hornak, J., pp. 172188. New York: John Wiley and Sons.
Brainard, D.H. & Wandell, B.A. (1992). Asymmetric color-matching: How color appearance depends on the illuminant. Journal of the Optical Society of America A 9, 14331448.
Burnham, R.W., Evans, R.M. & Newhall, S.M. (1957). Prediction of color appearance with different adaptation illuminations. Journal of the Optical Society of America 47, 3542.
CIE. (1986). Colorimetry. 2nd edition. Vienna: Bureau Central de la CIE.
Delahunt, P.B. & Brainard, D.H. (2004). Does human color constancy incorporate the statistical regularity of natural daylight? Journal of Vision 4, 5781.
Derefeldt, G. (1991). Colour appearance systems. In The Perception of Colour, ed. Gouras, P., pp. 218261. Boca Raton, FL: CRC Press, Inc.
Doerschner, K., Boyaci, H. & Maloney, L.T. (2004). Human observers compensate for secondary illumination originating in nearby chromatic surfaces. Journal of Vision 4, 92105.
Dror, R.O., Willsky, A.S. & Adelson, E.H. (2004). Statistical characterization of real-world illumination. Journal of Vision 4, 821837.
Fleming, R.W. & Büthoff, H.H. (2005). Low-level image cues in the perception of translucent materials. ACM Transaction on Applied Perception 2, 346382.
Fleming, R.W., Dror, R.O. & Adelson, E.H. (2003). Real-world illumination and the perception of surface reflectance. Journal of Vision 3, 347368.
Foster, D.H. & Nascimento, S.M.C. (1994). Relational colour constancy from invariant cone-excitation ratios. Proceedings of the Royal Society of London B 257, 115121.
Griffin, L.D. (1999). Partitive mixing of images: A tool for investigating pictorial perception. Journal of the Optical Society of America 16, 28252835.
Hansen, T., Sebastian, W. & Gegenfurtner, K.R. (2007). Effects of spatial and temporal context on color categories and color constancy. Journal of Vision 7, 115.
Helson, H. (1940). Fundamental problems in color vision. II. Hue, lightness, and saturation of selective samples in chromatic illumination. Journal of Experimental Psychology 26, 127.
Hunter, R.S. & Harold, R.W. (1987). The Measurement of Appearance. 2nd edition. New York: John Wiley and Sons.
Hurlbert, A.C., Lee, H.C. & Bülthoff, H.H. (1989). Cues to the color of the illuminant. Investigative Opthalmology and Visual Science 30, 221.
Johnson, M.K. & Farid, H. (2007). Exposing digital forgeries in complex lighting environments. IEEE Transactions on Information Forensics and Security 2, 450461.
Khang, B.G. & Zaidi, Q. (2002). Cues and strategies for color constancy: Perceptual scission, image junctions and transformational color matching. Vision Research 42, 211226.
Lee, H.C. (1986). Method for computing the scene-illuminant chromaticity from specular highlights. Journal of Optical Society of America A 3, 16941699.
MacAdam, D.L. (1942). Visual sensitivities to color differences in daylight. Journal of the Optical Society of America 32, 247274.
Maloney, L.T. (1999). Physics-based approaches to modeling surface color perception. In Color Vision: From Genes to Perception, ed. Gegenfurtner, K.R. & Sharpe, L.T., pp. 387416. Cambridge University Press.
McCann, J.J. (1976). Quantitative studies in retinex theory: A comparison between theoretical predictions and observer responses to the ‘color mondrian’ experiments. Vision Research 16, 445458.
Motoyoshi, I., Nishida, S., Sharan, L. & Adelson, E.H. (2007). Image statistics and the perception of surface qualities. Nature 447, 206209.
Nishida, S. & Shinya, M. (1998). Use of image-based information in judgments of surface-reflectance properties. Journal of Optical Society of America A 15, 29512965.
Obein, G., Knoblauch, K. & Viénot, F. (2004). Difference scaling of gloss: Nonlinearity, binocularity, and constancy. Journal of Vision 4, 711720.
Pellacini, F., Ferwerda, J.A. & Greenberg, D.P. (2000). Toward a psychophysically-based light reflection model for image synthesis. In SIGGRAPH '00: Proceedings of the 27th annual conference on computer graphics and interactive techniques, pp. 5564. Toronto, Canada: ACM Press.
Pessoa, L., Mingolla, E. & Arend, L.E. (1996). The perception of lightness in 3-d curved objects. Perception and Psychophysics 58, 12931305.
Ramamoorthi, R. & Hanrahan, P. (2001). A signal-processing framework for inverse rendering. In SIGGRAPH '01: Proceedings of the 28th annual conference on computer graphics and interactive techniques, pp. 117128. Toronto, Canada: ACM Press.
Ripamonti, C., Bloj, M., Hauck, R., Mitha, K., Greenwald, S., Maloney, S.I. & Brainard, D.H. (2004). Measurements of the effect of surface slant on perceived lightness. Journal of Vision 4, 747763.
Shevell, S.K. (2003). Color appearance. In The Science of Color, ed. Shevell, S.K., pp. 149190. Washington, DC: Optical Society of America.
sRGB standard (1999). International Electrotechnical Commission Standard 61966-2-1. Geneva: International Electrotechnical Commission.
Todd, J.T., Norman, J.F. & Mingolla, E. (2004). Lightness constancy in the presence of specular highlights. Psychological Science 15, 3339.
Ward, G.J. (1992). Measuring and modeling anisotropic reflection. In SIGGRAPH '92: Proceedings of the 19th annual conference on computer graphics and interactive techniques, pp. 265272. Toronto, Canada: ACM Press.
Ward, G.J. (1994). The radiance lighting simulation and rendering system. In SIGGRAPH '94: Proceedings of the 21st annual conference on computer graphics and interactive techniques, pp. 459472. Toronto, Canada: ACM Press.
Wyszecki, G. (1986). Color appearance. In Handbook of Perception and Human Performance: Sensory Processes and Perception, ed. Boff, K.R., Kaufman, L. & Thomas, J.P., pp. 9.19.56. New York: John Wiley and Sons.
Xiao, B. & Brainard, D.H. (2006). Color perception of 3D objects: Constancy with respect to variation of surface gloss. In APGV '06: Proceedings of the 3rd symposium on applied perception in graphics and visualization, pp. 6368. Toronto, Canada: ACM Press.
Yang, J.N. & Maloney, L.T. (2001). Illuminant cues in surface color perception: Tests of three candidate cues. Vision Research 41, 25812600.
Yang, J.N. & Shevell, S.K. (2002). Stereo disparity improves color constancy. Vision Research 42, 19791989.

Keywords

Surface gloss and color perception of 3D objects

  • BEI XIAO (a1) and DAVID H. BRAINARD (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed