Skip to main content Accessibility help

Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans



In a visual delayed matching-to-sample task, compared to a control condition, we had previously identified different components of the human EEG that could reflect the rehearsal of an object representation in short-term memory (Tallon-Baudry et al., 1998). These components were induced oscillatory activities in the gamma (24–60 Hz) and beta (15–20 Hz) bands, peaking during the delay at occipital and frontal electrodes, and two negativities in the evoked potentials. Sustained activities (lasting until the end of the delay) are more likely to reflect the continuous rehearsing process in memory than transient (ending before the end of the delay) activities. Nevertheless, since the delay duration we used in our previous experiment was fixed and rather short, it was difficult to discriminate between sustained and transient components. Here we used the same delayed matching-to-sample task, but with variable delay durations. The same oscillatory components in the gamma and beta bands were observed again during the delay. The only components that showed a sustained time course compatible with a memory rehearsing process were the occipital gamma and frontal beta induced activities. These two activities slowly decreased with increasing delay duration, while the performance of the subjects decreased in parallel. No sustained response could be found in the evoked potentials. These results support the hypothesis that objects representations in visual short-term memory consist of oscillating synchronized cell assemblies.


Corresponding author

Correspondence and reprint requests to: C. Tallon-Baudry, Institute for Brain Research, A.G. Kreiter, University of Bremen, PO Box 330440, D-28334 Bremen, Germany.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed