Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T10:44:52.748Z Has data issue: false hasContentIssue false

Telencephalic projections to the nucleus of the basal optic root and pretectal nucleus lentiformis mesencephali in pigeons

Published online by Cambridge University Press:  02 June 2005

DOUGLAS R.W. WYLIE
Affiliation:
Department of Psychology, University of Alberta, Edmonton, Alberta, Canada University Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
CATHERINE J. OGILVIE
Affiliation:
Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
NATHAN A. CROWDER
Affiliation:
University Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada Present address: Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, Australia ACT 2601
RYAN R. BARKLEY
Affiliation:
Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
IAN R. WINSHIP
Affiliation:
Department of Psychology, University of Alberta, Edmonton, Alberta, Canada

Abstract

In birds, the nucleus of the basal optic root (nBOR) of the accessory optic system (AOS) and the pretectal nucleus lentiformis mesencephali (LM) are involved in the analysis of optic flow and the generation of the optokinetic response. In several species, it has been shown that the AOS and pretectum receive input from visual areas of the telencephalon. Previous studies in pigeons using anterograde tracers have shown that both nBOR and LM receive input from the visual Wulst, the putative homolog of mammalian primary visual cortex. In the present study, we used retrograde and anterograde tracing techniques to further characterize these projections in pigeons. After injections of the retrograde tracer cholera toxin subunit B (CTB) into either LM or nBOR, retrograde labeling in the telencephalon was restricted to the hyperpallium apicale (HA) of the Wulst. From the LM injections, retrograde labeling appeared as a discrete band of cells restricted to the lateral edge of HA. From the nBOR injections, the retrograde labeling was more distributed in HA, generally dorsal and dorso-medial to the LM-projecting neurons. In the anterograde experiments, biotinylated dextran amine (BDA) was injected into HA and individual axons were reconstructed to terminal fields in the LM and nBOR. Those fibers projecting to the nBOR also innervated the adjacent ventral tegmental area. However, tracing of BDA-labeled axons revealed no evidence that individual neurons project to both LM and nBOR. In summary, our results suggest that the nBOR and LM receive input from different areas of the Wulst. We discuss how these projections may transmit visual and/or somatosensory information to the nBOR and LM.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alpar, A. & Tombol, T. (1998). Telencephalic connections of the visual system of the chicken: Tracing the interrelation of the efferents of the visual Wulst and the hyperstriatum ventrale. Annals of Anatomy 180, 529536.CrossRefGoogle Scholar
Arends, J.J.A. & Zeigler, H.P. (1991). Organization of the cerebellum in the pigeon (Columba livia): II. Projections of the cerebellar nuclei. Journal of Comparative Neurology 306, 245272.Google Scholar
Bagnoli, P. & Burkhalter, A. (1983). Organization of the afferent projections to the Wulst in the pigeon. Journal of Comparative Neurology 214, 103113.CrossRefGoogle Scholar
Bagnoli, P., Fontanesi, G., Casini, G., & Porciatti, V. (1990). Binocularity in the little owl, Athene noctua. I. Anatomical investigation of the thalamo-Wulst pathway. Brain, Behavior and Evolution 35, 3139.Google Scholar
Berk, M.L. & Hawkin, R.F. (1985). Ascending projections of the mammillary region in the pigeon: Emphasis on telencephalic projections. Journal of Comparative Neurology 239, 330340.CrossRefGoogle Scholar
Berson, D.M. & Graybiel, A.M. (1980). Some cortical and subcortical fiber projections to the accessory optic nuclei in the cat. Neuroscience 5, 22032217.CrossRefGoogle Scholar
Brecha, N., Karten, H.J., & Hunt, S.P. (1980). Projections of the nucleus of basal optic root in the pigeon: An autoradiographic and horseradish peroxidase study. Journal of Comparative Neurology 189, 615670.CrossRefGoogle Scholar
Britto, L.R., Gasparotto, O.C., & Hamassaki, D.E. (1990). Visual telencephalon modulates directional selectivity of accessory optic neurons in pigeons. Visual Neuroscience 4, 310.CrossRefGoogle Scholar
Budzynski, C.A. & Bingman, V.P. (2004). Participation of the thalamofugal pathway in a coarse pattern discrimination task in an open arena. Behavioral Brain Research 153, 543556.CrossRefGoogle Scholar
Burns, S. & Wallman, J. (1981). Relation of single unit properties to the oculomotor function of the nucleus of the basal optic root (AOS) in chickens. Experimental Brain Research 42, 171180.Google Scholar
Butler, A.B. & Hodos, W. (1996). Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. New York: Wiley-Liss.
Carpenter, R.H.S. (1988). Movements of the Eye (2nd edition). London: Pion.
Casini, G., Porciatti, V., Fontanesi, G., & Bagnoli, P. (1992). Wulst efferents in the little owl Athene noctua: An investigation of projections to the optic tectum. Brain, Behavior and Evolution 39, 101115.CrossRefGoogle Scholar
Chen, S. & Aston-Jones, G. (1995). Evidence that cholera toxin B subunit (CTb) can be avidly taken up and transported by fibers of passage. Brain Research 674, 107111.CrossRefGoogle Scholar
Clarke, P.G.H. (1977). Some visual and other connections to the cerebellum of the pigeon. Journal of Comparative Neurology 174, 535552.CrossRefGoogle Scholar
Collewijn, H. (1975a). Direction-selective units in the rabbit's nucleus of the optic tract. Brain Research 100, 489508.Google Scholar
Collewijn, H. (1975b). Oculomotor areas in the rabbit's midbrain and pretectum. Journal of Neurobiology 6, 322.Google Scholar
Cooper, H.M. & Magnin, M. (1986). A common mammalian plan of accessory optic system organization revealed in all primates. Nature 324, 457459.CrossRefGoogle Scholar
Crowder, N.A., Dawson, M.R.W., & Wylie, D.R.W. (2003). Temporal frequency and velocity-like tuning in the pigeon accessory optic system. Journal of Neurophysiology 90, 18291841.CrossRefGoogle Scholar
Crowder, N.A., Dickson, C.T., & Wylie, D.R.W. (2004). Telencephalic input to the pretectum of pigeons: An electrophysiological and pharmacological inactivation study. Journal of Neurophysiology 191, 274285.Google Scholar
Deng, C. & Rogers, L.J. (2000). Organization of intratelencephalic projections to the visual Wulst of the chick. Brain Research 856, 152162.CrossRefGoogle Scholar
Deng, C. & Wang, B. (1992). Overlap of somatic and visual response areas in the Wulst of pigeon. Brain Research 582, 320322.Google Scholar
Deng, C. & Wang, B. (1993). Convergence of somatic and visual afferent impulses in the Wulst of pigeon. Experimental Brain Research 96, 287290.Google Scholar
Distler, C. & Hoffmann, K.P. (1993). Visual receptive field properties in kitten pretectal nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract. Journal of Neurophysiology 70, 814827.Google Scholar
Fan, T.X., Weber, A.E., Pickard, G.E., Faber, K.M., & Ariel, M. (1995). Visual responses and connectivity in the turtle pretectum. Journal of Neurophysiology 73, 25072521.Google Scholar
Fite, K.V. (1985). Pretectal and accessory-optic visual nuclei of fish, amphibia and reptiles: Themes and variations. Brain, Behavior and Evolution 26, 7190.CrossRefGoogle Scholar
Fite, K.V., Brecha, N., Karten, H.J., & Hunt, S.P. (1981). Displaced ganglion cells and the accessory optic system of pigeon. Journal of Comparative Neurology 195, 279288.CrossRefGoogle Scholar
Fite, K.V., Kwei-Levy, C., & Bengston, L. (1989). Neurophysiological investigation of the pretectal nucleus lentiformis mesencephali in Rana pipiens. Brain, Behavior and Evolution 34, 164170.Google Scholar
Funke, K. (1989). Somatosensory areas in the telencephalon of the pigeon. I. Response characteristics. Experimental Brain Research 76, 603619.CrossRefGoogle Scholar
Gamlin, P.D.R. & Cohen, D.H. (1988a). Retinal projections to the pretectum in the pigeon (Columba livia). Journal of Comparative Neurology 269, 117.Google Scholar
Gamlin, P.D.R. & Cohen, D.H. (1988b). Projections of the retinorecipient pretectal nuclei in the pigeon (Columba livia). Journal of Comparative Neurology 269, 1846.Google Scholar
Gibson, J.J. (1954). The visual perception of object motion and subjective movement. Psychological Review 61, 304314.CrossRefGoogle Scholar
Gioanni, H., Rey, J., Villalobos, J., & Dalbera, A. (1984). Single unit activity in the nucleus of the basal optic root (nBOR) during optokinetic, vestibular and visuo-vestibular stimulations in the alert pigeon (Columba livia). Experimental Brain Research 57, 4960.CrossRefGoogle Scholar
Giolli, R.A., Blanks, R.H., & Torigoe, Y. (1984). Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods. Journal of Comparative Neurology 227, 228251.CrossRefGoogle Scholar
Giolli, R.A., Blanks, R.H.I., Torigoe, Y., & Williams, D.D. (1985). Projections of the medial terminal nucleus, ventral tegmental nuclei and substantia nigra of rabbit and rat as studied by retrograde axonal transport of horseradish peroxidase. Journal of Comparative Neurology 232, 99116.CrossRefGoogle Scholar
Grasse, K.L. & Cynader, M.S. (1982). Electrophysiology of medial terminal nucleus of accessory optic system in the cat. Journal of Neurophysiology 48, 490504.Google Scholar
Grasse, K.L. & Cynader, M.S. (1984). Electrophysiology of lateral and dorsal terminal nuclei of the cat accessory optic system. Journal of Neurophysiology 51, 276293.Google Scholar
Grasse, K.L. & Cynader, M.S. (1990). The accessory optic system in frontal-eyed animals. In Vision and Visual Dysfunction, Vol. IV, The Neuronal Basis of Visual Function, ed. Leventhal, A., pp. 111139. New York: MacMillan.
Hahmann, U. & Güntürkün, O. (1993). The visual acuity for the lateral visual field of the pigeon (Columba livia). Vision Research 33, 16591664.CrossRefGoogle Scholar
Hamassaki, D.E., Gasparotto, O.C., Nogueira, M.I., & Britto, L.R.G. (1988). Telencephalic and pretectal modulation of the directional selectivity of accessory optic neurons in the pigeon. Brazilian Journal of Medical and Biological Research 21, 649652.Google Scholar
Hodos, W. (1993). The visual capabilities of birds. In Vision, Brain, and Behavior in Birds, ed. Zeigler, H.P. & Bischof, H.J., pp. 3676. Cambridge, Massachusetts: The MIT Press.
Hodos, W., Macko, K.A., & Bessette, B.B. (1984). Near-field acuity changes after visual system lesions in pigeons. II. Telencephalon. Behavioral Brain Research 13, 1530.CrossRefGoogle Scholar
Hoffmann, K.P. & Distler, C. (1989). Quantitative analysis of visual receptive fields of neurons in nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in macaque monkey. Journal of Neurophysiology 62, 416428.Google Scholar
Hoffmann, K.P., Distler, C., & Erickson, R.G. (1991). Functional projections from striate cortex and superior temporal sulcus to the nucleus of the optic tract (NOT) and dorsal terminal nucleus of the accessory optic tract (DTN) of macaque monkeys. Journal of Comparative Neurology 313, 707724.CrossRefGoogle Scholar
Hoffmann, K.P., Distler, C., Erickson, R.G., & Mader, W. (1988). Physiological and anatomical identification of the nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in monkeys. Experimental Brain Research 69, 635644.Google Scholar
Hoffmann, K.P. & Schoppmann, A. (1975). Retinal input to direction selective cells in the nucleus tractus opticus of the cat. Brain Research 99, 359366.CrossRefGoogle Scholar
Hoffmann, K.P. & Schoppmann, A. (1981). A quantitative analysis of the direction-specific response of neurons in the cat's nucleus of the optic tract. Experimental Brain Research 42, 146157.Google Scholar
Hollander, H., Tietze, J., & Distel, H. (1979). An autoradiographic study of the subcortical projections of the rabbit striate cortex in the adult and during postnatal development. Journal of Comparative Neurology 184, 783794.CrossRefGoogle Scholar
Huerta, M.F., Weber, J.T., Rothstein, L.R., & Harting, J.K. (1985). Subcortical connections of area 17 in the tree shrew: An autoradiographic analysis. Brain Research 340, 163170.CrossRefGoogle Scholar
Ibbotson, M.R., Mark, R.F., & Maddess, T.L. (1994). Spatiotemporal response properties of direction-selective neurons in the nucleus of the optic tract and the dorsal terminal nucleus of the wallaby, Macropus eugenii. Journal of Neurophysiology 72, 29272943.Google Scholar
Ilg, U.J. & Hoffmann, K.-P. (1993). Functional grouping of the cortico-pretectal projection. Journal of Neurophysiology 70, 867869.Google Scholar
Ilg, U.J. & Hoffmann, K.-P. (1996). Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. European Journal of Neuroscience 8, 92105.CrossRefGoogle Scholar
Karten, H.J., Fite, K.V., & Brecha, N. (1977). Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columba livia). Proceedings of the National Academy of Sciences of the U.S.A. 74, 17521756.Google Scholar
Karten, H.J. & Hodos, W. (1967). A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia). Baltimore, Maryland: Johns Hopkins Press.
Karten, H.J., Hodos, W., Nauta, W.J., & Revzin, A.M. (1973). Neural connections of the “visual Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). Journal of Comparative Neurology 150, 253278.Google Scholar
Karten, H.J. & Shimizu, T. (1989). The origins of neocortex: Connections and lamination as distinct events in evolution. Journal of Cognitive Neuroscience 1, 290301.CrossRefGoogle Scholar
Katte, O. & Hoffmann, K.-P. (1980). Direction specific neurons in the pretectum of the frog (Rana esculenta). Journal of Comparative Physiology 140, 5357.CrossRefGoogle Scholar
Kroner, S. & Güntürkün, O. (1999). Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): A retro- and anterograde pathway tracing study. Journal of Comparative Neurology 407, 228260.3.0.CO;2-2>CrossRefGoogle Scholar
Lau, K.L., Glover, R.G., Linkenhoker, B., & Wylie, D.R.W. (1998). Topographical organization of inferior olive cells projecting to translation and rotation zones in the vestibulocerebellum of pigeons. Neuroscience 85, 605614.CrossRefGoogle Scholar
Lent, R. (1982). The organization of subcortical projections of the hamster's visual cortex. Journal of Comparative Neurology 206, 227242.CrossRefGoogle Scholar
Lui, F., Giolli, R.A., Blanks, R.H.I., & Tom, E.M. (1994). Pattern of striate cortical projections to the pretectal complex in the guinea pig. Journal of Comparative Neurology 344, 598609.CrossRefGoogle Scholar
Maekawa, K. & Takeda, T. (1979). Origin of descending afferents to the rostral part of the dorsal cap of the inferior olive which transfers contralateral optic activities to the flocculus. A horseradish peroxidase study. Brain Research 172, 393405.Google Scholar
Marcotte, R.R. & Updyke, B.V. (1982). Cortical visual areas of the cat project differentially onto the nuclei of the accessory optic system. Brain Research 242, 205217.CrossRefGoogle Scholar
McKenna, O. & Wallman, J. (1985a). Accessory optic system and pretectum of birds: Comparisons with those of other vertebrates. Brain, Behavior and Evolution 26, 91116.Google Scholar
McKenna, O.C. & Wallman, J. (1985b). Functional postnatal changes in avian brain regions responsive to retinal slip: A 2-deoxy-D-glucose study. Journal of Neuroscience 5, 330342.Google Scholar
Medina, L. & Reiner, A. (2000). Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends in Neuroscience 23, 112.Google Scholar
Miceli, D., Gioanni, H., Reperant, J., & Peyrichoux, J. (1979). The avian visual Wulst: I. An anatomical study of afferent and efferent pathways. II. An electrophysiological study of the functional properties of single neurons. In Neural Mechanisms of Behavior of the Pigeon, ed. Granda, A.M. & Maxwell, J.H., pp. 223254. New York: Plenum Press.
Miceli, D., Marchand, L., Reperant, J., & Rio, J.P. (1990). Projections of the dorsolateral anterior complex and adjacent thalamic nuclei upon the visual Wulst in the pigeon. Brain Research 518, 317323.CrossRefGoogle Scholar
Miceli, D. & Reperant, J. (1983). Hyperstriatal-tectal projections in the pigeon (Columba livia) as demonstrated by the retrograde double-label fluorescence technique. Brain Research 276, 147153.CrossRefGoogle Scholar
Miceli, D., Reperant, J., Villalobos, J., & Dionne, L. (1987). Extratelencephalic projections of the avian visual Wulst. A quantitative autoradiographic study in the pigeon Columbia livia. Journal fur Hirnforschung 28, 4557.Google Scholar
Morgan, B. & Frost, B.J. (1981). Visual response properties of neurons in the nucleus of the basal optic root of pigeons. Experimental Brain Research 42, 184188.Google Scholar
Mustari, M.J. & Fuchs, A.F. (1990). Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. Journal of Neurophysiology 64, 7790.Google Scholar
Mustari, M.J., Fuchs, A.F., Kaneko, C.R., & Robinson, F.R. (1994). Anatomical connections of the primate pretectal nucleus of the optic tract. Journal of Comparative Neurology 349, 111128.CrossRefGoogle Scholar
Nakayama, K. (1981). Differential motion hyperacuity under conditions of common image motion. Vision Research 21, 14751482.CrossRefGoogle Scholar
Natal, C.L. & Britto, L.R.G. (1987). The pretectal nucleus of the optic tract modulates the direction selectivity of the accessory optic neurons in rats. Brain Research 419, 320323.CrossRefGoogle Scholar
Nguyen, A.P., Spetch, M.L., Crowder, N.C., Winship, I.R., Hurd, P.L., & Wylie, D.R.W. (2004). A dissociation of motion and spatial-pattern vision in the avian telencephalon: Implications for the evolution of “visual streams”. Journal of Neuroscience 24, 49624970.Google Scholar
Nixdorf, B.E. & Bischof, H.J. (1982). Afferent connections of the ectostriatum and visual Wulst in the zebra finch (Taeniopygia guttata castanotis Gould)—an HRP study. Brain Research 248, 917.CrossRefGoogle Scholar
Nogueira, M.I. & Britto, L.R.G. (1991). Extraretinal modulation of accessory optic units in the pigeon. Brazilian Journal for Medical and Biological Research 24, 623631.Google Scholar
Pereira, A., Volchan, E., Vargas, C.D., Penetra, L., & Rocha-Miranda, C.E. (2000). Cortical and subcortical influences on the nucleus of the optic tract of the opossum. Neuroscience 95, 953963.Google Scholar
Reiner, A., Brecha, N., & Karten, H.J. (1979). A specific projection of retinal displaced ganglion cells to the nucleus of the basal optic root in the chicken. Neuroscience 4, 16791688.CrossRefGoogle Scholar
Reiner, A. & Karten, H.J. (1983). The laminar source of efferent projections from the avian Wulst. Brain Research 275, 349354.CrossRefGoogle Scholar
Reiner, A., Perkel, D.J., Bruce, L.L., Butler, A.B., Csillag, A., Kuenzel, W., Medina, L., Paxinos, G., Shimizu, T., Striedter, G., Wild, M., Ball, GF., Durand, S., Guturkun, O., Lee, D.W., Mello, C.V., Powers, A., White, S.A., Hough, G., Kubikova, L., Smulders, T.V., Wada, K., Dugas-Ford, J., Husband, S., Yamamoto, K., Yu, J., Siang, C., & Jarvis, E.D. (2004). Avian Brain Nomenclature Forum. Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology 473, 377414.Google Scholar
Remy, M. & Güntürkün, O. (1991). Retinal afferents to the tectum opticum and the nucleus opticus principalis thalami in the pigeon. Journal of Comparative Neurology 305, 5770.CrossRefGoogle Scholar
Rio, J.P., Villalobos, J., Miceli, D., & Reperant, J. (1983). Efferent projections of the visual Wulst upon the nucleus of the basal optic root in the pigeon. Brain Research 271, 145151.CrossRefGoogle Scholar
Rosenberg, A.F. & Ariel, M. (1990). Visual-response properties of neurons in turtle basal optic nucleus in vitro. Journal of Neurophysiology 63, 10331045.Google Scholar
Schoppmann, A. (1981). Projections from areas 17 and 18 of the visual cortex to the nucleus of the optic tract. Brain Research 223, 117.Google Scholar
Shimizu, T. & Bowers, A.N. (1999). Visual circuits of the avian telencephalon: evolutionary implications. Behavioral Brain Reseach 98, 183191.CrossRefGoogle Scholar
Shimizu, T., Cox, K., & Karten, H.J. (1995). Intratelencephalic projections of the visual Wulst in pigeons (Columba livia). Journal of Comparative Neurology 359, 551572.CrossRefGoogle Scholar
Shimizu, T. & Karten, H.J. (1990). Immunohistochemical analysis of the visual Wulst of the pigeon (Columba livia). Journal of Comparative Neurology 300, 346369.CrossRefGoogle Scholar
Shimizu, T. & Karten, H.J. (1991). Central visual pathways in retiles and birds: Evolution of the visual system. In Vision and Visual Dysfunction, Vol. 2., ed. Gregory, R. & Cronly-Dillon, J.R., pp. 421441. London, UK: Macmillan.
Shimizu, T. & Karten, H.J. (1993). The avian visual system and the evolution of the neocortex. In Vision, Brain, and Behavior in Birds, ed. Zeigler, H.P. & Bischof, H.J., pp. 103114. Cambridge, Massachusetts: MIT.
Shintani, T., Hoshino, K., Meguro, R., Kaiya, T., & Norita, M. (1999). A light and electron microscopic analysis of the convergent retinal and visual cortical projections to the nucleus of the optic tract (NOT) in the pigmented rat. Neurobiology 7, 445460.Google Scholar
Simpson, J.I. (1984). The accessory optic system. Annual Review of Neuroscience 7, 1341.CrossRefGoogle Scholar
Simpson, J.I., Giolli, R.A., & Blanks, R.H.I. (1988a). The pretectal nuclear complex and the accessory optic system. In Neuroanatomy of the Oculomotor System, ed. Buttner-Ennerver, J.A., pp. 335364. Amsterdam: Elsevier.
Simpson, J.I., Leonard, C.S., & Soodak, R.E. (1988b). The accessory optic system of rabbit. II. Spatial organization of direction selectivity. Journal of Neurophysiology 60, 20552072.Google Scholar
Soodak, R.E. & Simpson, J.I. (1988). The accessory optic system of rabbit. I. Basic visual response properties. Journal of Neurophysiology 60, 20372054.Google Scholar
Veenman, C.L., Reiner, A., & Honig, M.G. (1992). Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. Journal of Neuroscience Methods 41, 239254.CrossRefGoogle Scholar
Veenman, C.L., Wild, J.M., & Reiner, A. (1995). Organization of the avian “corticostriatal” projection system: A retrograde and anterograde pathway tracing study in pigeons. Journal of Comparative Neurology 354, 87126.CrossRefGoogle Scholar
Volchan, E., Rocha-Miranda, C.E., Picanco-Diniz, C.W., Zinsmeisser, B., Bernardes, R.F., & Franca, J.G. (1989). Visual response properties of pretectal units in the nucleus of the optic tract of the opossum. Experimental Brain Research 78, 380386.Google Scholar
Watanabe, S. (1992). Effect of lesions in the ectostriatum and Wulst on species and individual discrimination in pigeons. Behavioral Brain Research 49, 197203.CrossRefGoogle Scholar
Weber, J.T. (1985). Pretectal complex and accessory optic system of primates. Brain, Behavior and Evolution 26, 117140.CrossRefGoogle Scholar
Weber, J.T. & Harting, J.K. (1980). The efferent projections of the pretectal complex: An autoradiographic and horseradish peroxidase analysis. Brain Research 194, 128.CrossRefGoogle Scholar
Westheimer, G. & McKee, S.P. (1975). Visual acuity in the presence of retinal-image motion. Journal of the Optical Society of America 65, 847850.CrossRefGoogle Scholar
Wild, J.M. (1987). The avian somatosensory system: Connections of regions of body representation in the forebrain of the pigeon. Brain Research 412, 205223.CrossRefGoogle Scholar
Wild, J.M. (1993). Descending projections of the songbird nucleus robustus archistrialis. Journal of Comparative Neurology 338, 225241.CrossRefGoogle Scholar
Wild, J.M. (1997). The avian somatosensory system: The pathway from wing to Wulst in a passerine (Chloris chloris). Brain Research 759, 122134.CrossRefGoogle Scholar
Wild, J.M. & Williams, M.N. (2000). Rostral Wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract. Journal of Comparative Neurology 416, 429450.Google Scholar
Wilson, P. (1980). The organization of the visual hyperstriatum in the domestic chick. II. Receptive field properties of single units. Brain Research 188, 333345.Google Scholar
Winterson, B.J. & Brauth, S.E. (1985). Direction-selective single units in the nucleus lentiformis mesencephali of the pigeon (Columba livia). Experimental Brain Research 60, 215226.Google Scholar
Wylie, D.R.W. (2001). Projections from the nucleus of the basal optic root and nucleus lentiformis mesencephali to the inferior olive in pigeons (Columba livia). Journal of Comparative Neurology 429, 502513.3.0.CO;2-E>CrossRefGoogle Scholar
Wylie, D.R.W. & Crowder, N.A. (2000). Spatiotemporal properties of fast and slow neurons in the pretectal nucleus lentiformis mesencephali in pigeons. Journal of Neurophysiology 84, 25292540.Google Scholar
Wylie, D.R. & Frost, B.J. (1990a). Visual response properties of neurons in the nucleus of the basal optic root of the pigeon: A quantitative analysis. Experimental Brain Research 82, 327336.Google Scholar
Wylie, D.R. & Frost, B.J. (1990b). Binocular neurons in the nucleus of the basal optic root (nBOR) of the pigeon are selective for either translational or rotational visual flow. Visual Neuroscience 5, 489495.Google Scholar
Wylie, D.R.W. & Frost, B.J. (1996). The pigeon optokinetic system: Visual input in extraocular muscle coordinates. Visual Neuroscience 13, 945953.CrossRefGoogle Scholar
Wylie, D.R.W. & Frost, B.J. (1999). Responses of neurons in the nucleus of the basal optic root to translational and rotational flowfields. Journal of Neurophysiology 81, 267276.Google Scholar
Wylie, D.R., Linkenhoker, B., & Lau, K.L. (1997). Projections of the nucleus of the basal optic root in pigeons (Columba livia) revealed with biotinylated dextran amine. Journal of Comparative Neurology 384, 517536.3.0.CO;2-5>CrossRefGoogle Scholar