Skip to main content Accesibility Help
×
×
Home

Temporal properties of surround suppression in cat primary visual cortex

  • SÉVERINE DURAND (a1), TOBE C.B. FREEMAN (a1) (a2) and MATTEO CARANDINI (a1) (a3)
Abstract

The responses of neurons in primary visual cortex (V1) are suppressed by stimuli presented in the region surrounding the receptive field. There is debate as to whether this surround suppression is due to intracortical inhibition, is inherited from lateral geniculate nucleus (LGN), or is due to a combination of these factors. The mechanisms involved in surround suppression may differ from those involved in suppression within the receptive field, which is called cross-orientation suppression. To compare surround suppression to cross-orientation suppression, and to help elucidate its underlying mechanisms, we studied its temporal properties in anesthetized and paralyzed cats. We first measured the temporal resolution of suppression. While cat LGN neurons respond vigorously to drift rates up to 30 Hz, most cat V1 neurons stop responding above 10–15 Hz. If suppression originated in cortical responses, therefore, it should disappear above such drift rates. In a majority of cells, surround suppression decreased substantially when surround drift rate was above ∼15 Hz, but some neurons demonstrated suppression with surround drift rates as high as 21 Hz. We then measured the susceptibility of suppression to contrast adaptation. Contrast adaptation reduces responses of cortical neurons much more than those of LGN neurons. If suppression originated in cortical responses, therefore, it should be reduced by adaptation. Consistent with this hypothesis, we found that prolonged exposure to the surround stimulus decreased the strength of surround suppression. The results of both experiments differ markedly from those previously obtained in a study of cross-orientation suppression, whose temporal properties were found to resemble those of LGN neurons. Our results provide further evidence that these two forms of suppression are due to different mechanisms. Surround suppression can be explained by a mixture of thalamic and cortical influences. It could also arise entirely from intracortical inhibition, but only if inhibitory neurons respond to somewhat higher drift rates than most cortical cells.

Copyright
Corresponding author
Address correspondence and reprint requests to: Séverine Durand: Riken, Brain Science Institute, Laboratory for Neuronal Circuit Development, 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan. E-mail: severine@brain.riken.jp
References
Hide All

REFERENCES

Albrecht, D.G., Farrar, S.B. & Hamilton, D.B. (1984). Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. Journal of Physiology (London) 347, 713739.
Albrecht, D.G. & Hamilton, D.B. (1982). Striate cortex of monkey and cat: Contrast response function. Journal of Neurophysiology 48, 217237.
Allison, J.D., Smith, K.R. & Bonds, A.B. (2001). Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex. Visual Neuroscience 18, 941948.
Angelucci, A. & Bressloff, P.C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Progress in Brain Research 154, 93120.
Angelucci, A. & Bullier, J. (2003). Reaching beyond the classical receptive field of V1 neurons: Horizontal or feedback axons? Journal of Physiology (Paris) 97, 141154.
Angelucci, A., Levitt, J.B., Walton, E.J., Hupe, J.M., Bullier, J. & Lund, J.S. (2002). Circuits for local and global signal integration in primary visual cortex. Journal of Neuroscience 22, 86338646.
Azouz, R., Gray, C.M., Nowak, L.G. & McCormick, D.A. (1997). Physiological properties of inhibitory interneurons in cat striate cortex. Cerebral Cortex 7, 534545.
Bair, W., Cavanaugh, J.R. & Movshon, J.A. (2003). Time course and time-distance relationships for surround suppression in macaque V1 neurons. Journal of Neuroscience 23, 76907701.
Blakemore, C. & Tobin, E.A. (1972). Lateral inhibition between orientation detectors in the cat's visual cortex. Experimental Brain Research 15, 439440.
Bonds, A.B. (1989). Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Visual Neuroscience 2, 4155.
Bonin, V., Mante, V. & Carandini, M. (2005). The suppressive field of neurons in lateral geniculate nucleus. Journal of Neuroscience 25, 1084410856.
Brainard, D.H. (1997). The Psychophysics Toolbox. Spatial Vision 10, 433436.
Carandini, M. (2004). Receptive fields and suppressive fields in the early visual system. In The Cognitive Neurosciences III, ed. Gazzaniga, M.S., pp. 313326. Cambridge, MA: MIT Press.
Carandini, M. & Ferster, D. (1997). A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science 276, 949952.
Carandini, M., Heeger, D.J. & Movshon, J.A. (1997). Linearity and normalization in simple cells of the macaque primary visual cortex. Journal of Neuroscience 17, 86218644.
Carandini, M., Heeger, D.J. & Senn, W. (2002). A synaptic explanation of suppression in visual cortex. Journal of Neuroscience 22, 1005310065.
Cavanaugh, J.R., Bair, W. & Movshon, J.A. (2002a). Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of Neurophysiology 88, 25302546.
Cavanaugh, J.R., Bair, W. & Movshon, J.A. (2002b). Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. Journal of Neurophysiology 88, 25472556.
Chen, C.C., Kasamatsu, T., Polat, U. & Norcia, A.M. (2001). Contrast response characteristics of long-range lateral interactions in cat striate cortex. Neuroreport 12, 655661.
DeAngelis, G.C., Anzai, A., Ohzawa, I. & Freeman, R.D. (1995). Receptive field structure in the visual cortex: Does selective stimulation induce plasticity? Proceedings of the National Academy of Sciences 92, 96829686.
DeAngelis, G.C., Freeman, R.D. & Ohzawa, I. (1994). Length and width tuning of neurons in the cat's primary visual cortex. Journal of Neurophysiology 71, 347374.
DeAngelis, G.C., Robson, J.G., Ohzawa, I. & Freeman, R.D. (1992). The organization of suppression in receptive fields of neurons in cat visual cortex. Journal of Neurophysiology 68, 144163.
Durand, S., Freeman, T.C.B., Mante, V., Kiper, D. & Carandini, M. (2001). Cross-orientation suppression in cat V1 with very fast stimuli. Society for Neuroscience Abstracts Vol. 27, Program No. 12.10.
Durand, S., Mante, V., Freeman, T.C.B. & Carandini, M. (2002). Temporal properties of surround suppression in primary visual cortex. European Journal of Neuroscience, Abstract # 051.6.
Efron, B. & Tibshirani, R.J. (1993). An introduction to the Bootstrap, vol. 57. New York: Chapman & Hall.
Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Current Opinion in Neurobiology 10, 438443.
Freeman, T.C., Durand, S., Kiper, D.C. & Carandini, M. (2002). Suppression without inhibition in visual cortex. Neuron 35, 759771.
Gegenfurtner, K.R., Kiper, D.C. & Levitt, J.B. (1997). Functional properties of neurons in macaque area V3. Journal of Neurophysiology 77, 19061923.
Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience 9, 181197.
Hubel, D. & Wiesel, T. (1965). Receptive field and functional architecture in two nonstriate visual areas (18–19) of the cat. Journal of Neurophysiology 28, 229289.
Ikeda, H. & Wright, M.J. (1975). Spatial and temporal properties of ‘sustained’ and ‘transient’ neurones in area 17 of the cat's visual cortex. Experimental Brain Research 22, 363383.
Jagadeesh, B. & Ferster, D. (1990). Receptive field lengths in cat striate cortex can increase with decreasing stimulus contrast. Society for Neuroscience Abstracts 16, 293.
Jones, H.E., Andolina, I.M., Oakely, N.M., Murphy, P.C. & Sillito, A.M. (2000). Spatial summation in lateral geniculate nucleus and visual cortex. Experimental Brain Research 135, 279284.
Kapadia, M.K., Westheimer, G. & Gilbert, C.D. (1999). Dynamics of spatial summation in primary visual cortex of alert monkeys. Proceedings of the National Academy of Sciences 96, 1207312078.
Lehmkuhle, S., Kratz, K.E., Mangel, S.C. & Sherman, S.M. (1980). Spatial and temporal sensitivity of X- and Y-cells in dorsal lateral geniculate nucleus of the cat. Journal of Neurophysiology 43, 520541.
Levitt, J.B. & Lund, J.S. (2002). The spatial extent over which neurons in macaque striate cortex pool visual signals. Visual Neuroscience 19, 439452.
Li, B., Peterson, M.R., Thompson, J.K., Duong, T. & Freeman, R.D. (2005). Cross-orientation suppression: Monoptic and dichoptic mechanisms are different. Journal of Neurophysiology 94, 16451650.
Li, B., Thompson, J.K., Duong, T., Peterson, M.R. & Freeman, R.D. (2006). Origins of cross-orientation suppression in the visual cortex. Journal of Neurophysiology 96, 17551764.
Li, C. & Li, W. (1994). Extensive integration beyond the classical receptive field of cat's striate cortical neurons—classification and tuning properties. Vision Research 34, 23372356.
Maffei, L. & Fiorentini, A. (1976). The unresponsive regions of visual cortical receptive fields. Vision Research 13, 12551267.
Maffei, L., Fiorentini, A. & Bisti, S. (1973). Neural correlate of perceptual adaptation to gratings. Science 182, 10361038.
Morrone, M.C., Burr, D.C. & Maffei, L. (1982). Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proceedings of the Royal Society of London, Series B 216, 335354.
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. Journal of Physiology (London) 283, 101120.
Newsome, W.T., Gizzi, M.S. & & Movshon, J.A. (1983). Spatial and temporal properties of neurons in macaque MT. Investigative Ophthalmology & Visual Science Supplement 24, 106.
Ohzawa, I., Sclar, G. & Freeman, R.D. (1985). Contrast gain control in the cat visual system. Journal of Neurophysiology 54, 651665.
Orban, G.A., Hoffman, K.-P. & Duysens, J. (1985). Velocity selectivity in the cat visual system.I. Responses of LGN cells to moving bar stimuli: A comparison with cortical areas 17 and 18. Journal of Neurophysiology 54, 10261049.
Ozeki, H., Sadakane, O., Akasaki, T., Naito, T., Shimegi, S. & Sato, H. (2004). Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex. Journal of Neuroscience 24, 14281438.
Palmer, L.A. & Contreras, D. (2001). Differential contrast sensitivity of excitatory and inhibitory neurons in cat area 17. Society for Neuroscience Abstracts 27, Program No.821.61.
Pelli, D.G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision 10, 437442.
Petrov, Y., Carandini, M. & McKee, S. (2005). Two distinct mechanisms of suppression in human vision. Journal of Neuroscience 25, 87048707.
Pettet, M.W. & Gilbert, C.D. (1992). Dynamic changes in receptive-field size in cat primary visual cortex. Proceedings of the National Academy of Sciences 89, 83668370.
Priebe, N.J. & Ferster, D. (2006). Mechanisms underlying cross-orientation suppression in cat visual cortex. Nature Neuroscience 9, 552561.
Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. (2000). Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. Journal of Neuroscience 20, 42674285.
Saul, A.B. & Humphrey, A.L. (1990). Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. Journal of Neurophysiology 64, 206224.
Saul, A.B. & Humphrey, A.L. (1992). Temporal-frequency tuning of direction selectivity in cat visual cortex. Visual Neuroscience 8, 365372.
Sceniak, M.P., Hawken, M.J. & Shapley, R. (2001). Visual spatial characterization of macaque V1 neurons. Journal of Neurophysiology 85, 18731887.
Sceniak, M.P., Ringach, D.L., Hawken, M.J. & Shapley, R. (1999). Contrast's effect on spatial summation by macaque V1 neurons. Nature Neuroscience 2, 733739.
Sengpiel, F., Baddeley, R.J., Freeman, T.C., Harrad, R. & Blakemore, C. (1998). Different mechanisms underlie three inhibitory phenomena in cat area 17. Vision Research 38, 20672080.
Sengpiel, F., Sen, A. & Blakemore, C. (1997). Characteristics of surround inhibition in cat area 17. Experimental Brain Research 116, 216228.
Sengpiel, F. & Vorobyov, V. (2005). Intracortical origins of interocular suppression in the visual cortex. Journal of Neuroscience 25, 63946400.
Shou, T., Li, X., Zhou, Y. & Hu, B. (1996). Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings. Visual Neuroscience 13, 605613.
Simons, D. (1978). Response properties of vibrissa units in rat SI somatosensory neocortex. Journal of Neurophysiology 41, 798820.
Sincich, L.C., Park, K.F., Wohlgemuth, M.J. & Horton, J.C. (2004). Bypassing V1: A direct geniculate input to area MT. Nature Neuroscience 7, 11231128.
Skottun, B.C., De Valois, R.L., Grosof, D.H., Movshon, J.A., Albrecht, D.G. & Bonds, A.B. (1991). Classifying simple and complex cells on the basis of response modulation. Vision Research 31, 10791086.
Smith, M.A., Bair, W. & Movshon, J.A. (2006). Dynamics of suppression in macaque primary visual cortex. Journal of Neuroscience 26, 48264834.
Solomon, S.G., Peirce, J.W., Dhruv, N.T. & Lennie, P. (2004). Profound contrast adaptation early in the visual pathway. Neuron 42, 155162.
Solomon, S.G., White, A.J. & Martin, P.R. (2002). Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus. Journal of Neuroscience 22, 338349.
Swadlow, H. (1988). Efferent neurons and suspected interneurons in binocular visual cortex of the awake rabbit: Receptive fields and binocular properties. Journal of Neurophysiology 59, 11621187.
Swadlow, H. (1989). Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: Receptive fields and axonal properties. Journal of Neurophysiology 62(1), 288308.
Walker, G.A., Ohzawa, I. & Freeman, R.D. (1999). Asymmetric suppression outside the classical receptive field of the visual cortex. Journal of Neuroscience 19, 1053610553.
Webb, B.S., Dhruv, N.T., Solomon, S.G., Tailby, C. & Lennie, P. (2005a). Early and late mechanisms of surround suppression in striate cortex of macaque. Journal of Neuroscience 25, 1166611675.
Webb, B.S., Tinsley, C.J., Vincent, C.J. & Derrington, A.M. (2005b). Spatial distribution of suppressive signals outside the classical receptive field in lateral geniculate nucleus. Journal of Neurophysiology 94, 17891797.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed