REFERENCES
Albrecht, D.G.,
Farrar, S.B. &
Hamilton, D.B.
(1984).
Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex.
Journal of Physiology (London)
347,
713–739.
Albrecht, D.G. &
Hamilton, D.B.
(1982).
Striate cortex of monkey and cat: Contrast response function.
Journal of Neurophysiology
48,
217–237.
Allison, J.D.,
Smith, K.R. &
Bonds, A.B.
(2001).
Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex.
Visual Neuroscience
18,
941–948.
Angelucci, A. &
Bressloff, P.C.
(2006).
Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons.
Progress in Brain Research
154,
93–120.
Angelucci, A. &
Bullier, J.
(2003).
Reaching beyond the classical receptive field of V1 neurons: Horizontal or feedback axons?
Journal of Physiology (Paris)
97,
141–154.
Angelucci, A.,
Levitt, J.B.,
Walton, E.J.,
Hupe, J.M.,
Bullier, J. &
Lund, J.S.
(2002).
Circuits for local and global signal integration in primary visual cortex.
Journal of Neuroscience
22,
8633–8646.
Azouz, R.,
Gray, C.M.,
Nowak, L.G. &
McCormick, D.A.
(1997).
Physiological properties of inhibitory interneurons in cat striate cortex.
Cerebral Cortex
7,
534–545.
Bair, W.,
Cavanaugh, J.R. &
Movshon, J.A.
(2003).
Time course and time-distance relationships for surround suppression in macaque V1 neurons.
Journal of Neuroscience
23,
7690–7701.
Blakemore, C. &
Tobin, E.A.
(1972).
Lateral inhibition between orientation detectors in the cat's visual cortex.
Experimental Brain Research
15,
439–440.
Bonds, A.B.
(1989).
Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex.
Visual Neuroscience
2,
41–55.
Bonin, V.,
Mante, V. &
Carandini, M.
(2005).
The suppressive field of neurons in lateral geniculate nucleus.
Journal of Neuroscience
25,
10844–10856.
Brainard, D.H.
(1997).
The Psychophysics Toolbox.
Spatial Vision
10,
433–436.
Carandini, M.
(2004).
Receptive fields and suppressive fields in the early visual system. In
The Cognitive Neurosciences III, ed.
Gazzaniga, M.S., pp.
313–326.
Cambridge, MA:
MIT Press.
Carandini, M. &
Ferster, D.
(1997).
A tonic hyperpolarization underlying contrast adaptation in cat visual cortex.
Science
276,
949–952.
Carandini, M.,
Heeger, D.J. &
Movshon, J.A.
(1997).
Linearity and normalization in simple cells of the macaque primary visual cortex.
Journal of Neuroscience
17,
8621–8644.
Carandini, M.,
Heeger, D.J. &
Senn, W.
(2002).
A synaptic explanation of suppression in visual cortex.
Journal of Neuroscience
22,
10053–10065.
Cavanaugh, J.R.,
Bair, W. &
Movshon, J.A.
(2002a).
Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons.
Journal of Neurophysiology
88,
2530–2546.
Cavanaugh, J.R.,
Bair, W. &
Movshon, J.A.
(2002b).
Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons.
Journal of Neurophysiology
88,
2547–2556.
Chen, C.C.,
Kasamatsu, T.,
Polat, U. &
Norcia, A.M.
(2001).
Contrast response characteristics of long-range lateral interactions in cat striate cortex.
Neuroreport
12,
655–661.
DeAngelis, G.C.,
Anzai, A.,
Ohzawa, I. &
Freeman, R.D.
(1995).
Receptive field structure in the visual cortex: Does selective stimulation induce plasticity?
Proceedings of the National Academy of Sciences
92,
9682–9686.
DeAngelis, G.C.,
Freeman, R.D. &
Ohzawa, I.
(1994).
Length and width tuning of neurons in the cat's primary visual cortex.
Journal of Neurophysiology
71,
347–374.
DeAngelis, G.C.,
Robson, J.G.,
Ohzawa, I. &
Freeman, R.D.
(1992).
The organization of suppression in receptive fields of neurons in cat visual cortex.
Journal of Neurophysiology
68,
144–163.
Durand, S.,
Freeman, T.C.B.,
Mante, V.,
Kiper, D. &
Carandini, M.
(2001).
Cross-orientation suppression in cat V1 with very fast stimuli. Society for Neuroscience Abstracts
Vol. 27,
Program No. 12.10.
Durand, S.,
Mante, V.,
Freeman, T.C.B. &
Carandini, M.
(2002).
Temporal properties of surround suppression in primary visual cortex.
European Journal of Neuroscience,
Abstract # 051.6.
Efron, B. &
Tibshirani, R.J.
(1993).
An introduction to the Bootstrap,
vol. 57.
New York:
Chapman & Hall.
Fitzpatrick, D.
(2000).
Seeing beyond the receptive field in primary visual cortex.
Current Opinion in Neurobiology
10,
438–443.
Freeman, T.C.,
Durand, S.,
Kiper, D.C. &
Carandini, M.
(2002).
Suppression without inhibition in visual cortex.
Neuron
35,
759–771.
Gegenfurtner, K.R.,
Kiper, D.C. &
Levitt, J.B.
(1997).
Functional properties of neurons in macaque area V3.
Journal of Neurophysiology
77,
1906–1923.
Heeger, D.J.
(1992).
Normalization of cell responses in cat striate cortex.
Visual Neuroscience
9,
181–197.
Hubel, D. &
Wiesel, T.
(1965).
Receptive field and functional architecture in two nonstriate visual areas (18–19) of the cat.
Journal of Neurophysiology
28,
229–289.
Ikeda, H. &
Wright, M.J.
(1975).
Spatial and temporal properties of ‘sustained’ and ‘transient’ neurones in area 17 of the cat's visual cortex.
Experimental Brain Research
22,
363–383.
Jagadeesh, B. &
Ferster, D.
(1990).
Receptive field lengths in cat striate cortex can increase with decreasing stimulus contrast.
Society for Neuroscience Abstracts
16,
293.
Jones, H.E.,
Andolina, I.M.,
Oakely, N.M.,
Murphy, P.C. &
Sillito, A.M.
(2000).
Spatial summation in lateral geniculate nucleus and visual cortex.
Experimental Brain Research
135,
279–284.
Kapadia, M.K.,
Westheimer, G. &
Gilbert, C.D.
(1999).
Dynamics of spatial summation in primary visual cortex of alert monkeys.
Proceedings of the National Academy of Sciences
96,
12073–12078.
Lehmkuhle, S.,
Kratz, K.E.,
Mangel, S.C. &
Sherman, S.M.
(1980).
Spatial and temporal sensitivity of X- and Y-cells in dorsal lateral geniculate nucleus of the cat.
Journal of Neurophysiology
43,
520–541.
Levitt, J.B. &
Lund, J.S.
(2002).
The spatial extent over which neurons in macaque striate cortex pool visual signals.
Visual Neuroscience
19,
439–452.
Li, B.,
Peterson, M.R.,
Thompson, J.K.,
Duong, T. &
Freeman, R.D.
(2005).
Cross-orientation suppression: Monoptic and dichoptic mechanisms are different.
Journal of Neurophysiology
94,
1645–1650.
Li, B.,
Thompson, J.K.,
Duong, T.,
Peterson, M.R. &
Freeman, R.D.
(2006).
Origins of cross-orientation suppression in the visual cortex.
Journal of Neurophysiology
96,
1755–1764.
Li, C. &
Li, W.
(1994).
Extensive integration beyond the classical receptive field of cat's striate cortical neurons—classification and tuning properties.
Vision Research
34,
2337–2356.
Maffei, L. &
Fiorentini, A.
(1976).
The unresponsive regions of visual cortical receptive fields.
Vision Research
13,
1255–1267.
Maffei, L.,
Fiorentini, A. &
Bisti, S.
(1973).
Neural correlate of perceptual adaptation to gratings.
Science
182,
1036–1038.
Morrone, M.C.,
Burr, D.C. &
Maffei, L.
(1982).
Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence.
Proceedings of the Royal Society of London, Series B
216,
335–354.
Movshon, J.A.,
Thompson, I.D. &
Tolhurst, D.J.
(1978).
Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex.
Journal of Physiology (London)
283,
101–120.
Newsome, W.T.,
Gizzi, M.S. &
& Movshon, J.A.
(1983).
Spatial and temporal properties of neurons in macaque MT.
Investigative Ophthalmology & Visual Science Supplement
24,
106.
Ohzawa, I.,
Sclar, G. &
Freeman, R.D.
(1985).
Contrast gain control in the cat visual system.
Journal of Neurophysiology
54,
651–665.
Orban, G.A.,
Hoffman, K.-P. &
Duysens, J.
(1985).
Velocity selectivity in the cat visual system.I. Responses of LGN cells to moving bar stimuli: A comparison with cortical areas 17 and 18.
Journal of Neurophysiology
54,
1026–1049.
Ozeki, H.,
Sadakane, O.,
Akasaki, T.,
Naito, T.,
Shimegi, S. &
Sato, H.
(2004).
Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex.
Journal of Neuroscience
24,
1428–1438.
Palmer, L.A. &
Contreras, D.
(2001).
Differential contrast sensitivity of excitatory and inhibitory neurons in cat area 17.
Society for Neuroscience Abstracts
27,
Program No.821.61.
Pelli, D.G.
(1997).
The VideoToolbox software for visual psychophysics: Transforming numbers into movies.
Spatial Vision
10,
437–442.
Petrov, Y.,
Carandini, M. &
McKee, S.
(2005).
Two distinct mechanisms of suppression in human vision.
Journal of Neuroscience
25,
8704–8707.
Pettet, M.W. &
Gilbert, C.D.
(1992).
Dynamic changes in receptive-field size in cat primary visual cortex.
Proceedings of the National Academy of Sciences
89,
8366–8370.
Priebe, N.J. &
Ferster, D.
(2006).
Mechanisms underlying cross-orientation suppression in cat visual cortex.
Nature Neuroscience
9,
552–561.
Sanchez-Vives, M.V.,
Nowak, L.G. &
McCormick, D.A.
(2000).
Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo.
Journal of Neuroscience
20,
4267–4285.
Saul, A.B. &
Humphrey, A.L.
(1990).
Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus.
Journal of Neurophysiology
64,
206–224.
Saul, A.B. &
Humphrey, A.L.
(1992).
Temporal-frequency tuning of direction selectivity in cat visual cortex.
Visual Neuroscience
8,
365–372.
Sceniak, M.P.,
Hawken, M.J. &
Shapley, R.
(2001).
Visual spatial characterization of macaque V1 neurons.
Journal of Neurophysiology
85,
1873–1887.
Sceniak, M.P.,
Ringach, D.L.,
Hawken, M.J. &
Shapley, R.
(1999).
Contrast's effect on spatial summation by macaque V1 neurons.
Nature Neuroscience
2,
733–739.
Sengpiel, F.,
Baddeley, R.J.,
Freeman, T.C.,
Harrad, R. &
Blakemore, C.
(1998).
Different mechanisms underlie three inhibitory phenomena in cat area 17.
Vision Research
38,
2067–2080.
Sengpiel, F.,
Sen, A. &
Blakemore, C.
(1997).
Characteristics of surround inhibition in cat area 17.
Experimental Brain Research
116,
216–228.
Sengpiel, F. &
Vorobyov, V.
(2005).
Intracortical origins of interocular suppression in the visual cortex.
Journal of Neuroscience
25,
6394–6400.
Shou, T.,
Li, X.,
Zhou, Y. &
Hu, B.
(1996).
Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings.
Visual Neuroscience
13,
605–613.
Simons, D.
(1978).
Response properties of vibrissa units in rat SI somatosensory neocortex.
Journal of Neurophysiology
41,
798–820.
Sincich, L.C.,
Park, K.F.,
Wohlgemuth, M.J. &
Horton, J.C.
(2004).
Bypassing V1: A direct geniculate input to area MT.
Nature Neuroscience
7,
1123–1128.
Skottun, B.C.,
De Valois, R.L.,
Grosof, D.H.,
Movshon, J.A.,
Albrecht, D.G. &
Bonds, A.B.
(1991).
Classifying simple and complex cells on the basis of response modulation.
Vision Research
31,
1079–1086.
Smith, M.A.,
Bair, W. &
Movshon, J.A.
(2006).
Dynamics of suppression in macaque primary visual cortex.
Journal of Neuroscience
26,
4826–4834.
Solomon, S.G.,
Peirce, J.W.,
Dhruv, N.T. &
Lennie, P.
(2004).
Profound contrast adaptation early in the visual pathway.
Neuron
42,
155–162.
Solomon, S.G.,
White, A.J. &
Martin, P.R.
(2002).
Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus.
Journal of Neuroscience
22,
338–349.
Swadlow, H.
(1988).
Efferent neurons and suspected interneurons in binocular visual cortex of the awake rabbit: Receptive fields and binocular properties.
Journal of Neurophysiology
59,
1162–1187.
Swadlow, H.
(1989).
Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: Receptive fields and axonal properties.
Journal of Neurophysiology
62(1),
288–308.
Walker, G.A.,
Ohzawa, I. &
Freeman, R.D.
(1999).
Asymmetric suppression outside the classical receptive field of the visual cortex.
Journal of Neuroscience
19,
10536–10553.
Webb, B.S.,
Dhruv, N.T.,
Solomon, S.G.,
Tailby, C. &
Lennie, P.
(2005a).
Early and late mechanisms of surround suppression in striate cortex of macaque.
Journal of Neuroscience
25,
11666–11675.
Webb, B.S.,
Tinsley, C.J.,
Vincent, C.J. &
Derrington, A.M.
(2005b).
Spatial distribution of suppressive signals outside the classical receptive field in lateral geniculate nucleus.
Journal of Neurophysiology
94,
1789–1797.