Skip to main content

Temporal-frequency tuning of direction selectivity in cat visual cortex

  • Alan B. Saul (a1) and Allen L. Humphrey (a1)

Responses of 71 cells in areas 17 and 18 of the cat visual cortex were recorded extracellularly while stimulating with gratings drifting in each direction across the receptive field at a series of temporal frequencies. Direction selectivity was most prominent at temporal frequencies of 1–2 Hz. In about 20% of the total population, the response in the nonpreferred direction increased at temporal frequencies of around 4 Hz and direction selectivity was diminished or lost. In a few cells the preferred direction reversed.

One consequence of this behavior was a tendency for the preferred direction to have lower optimal temporal frequencies than the nonpreferred direction. Across the population, the preferred direction was tuned almost an octave lower. In spite of this, temporal resolution was similar in the two directions. It appeared that responses in the nonpreferred direction were suppressed at low frequencies, then recovered at higher frequencies.

This phenomenon might reflect the convergence in visual cortex of lagged and nonlagged inputs from the lateral geniculate nucleus. These afferents fire about a quarter-cycle apart (i.e. are in temporal quadrature) at low temporal frequencies, but their phase difference increases to a half-cycle by about 4 Hz. Such timing differences could underlie the prevalence of direction-selective cortical responses at 1 and 2 Hz and the loss of direction selectivity in many cells by 4 or 8 Hz.

Hide All
Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America 2, 284299.
BakerC.L., Jr. C.L., Jr. & Cynader, M.S. (1986). Spatial receptive-field properties of direction-selective neurons in cat striate cortex. Journal of Neurophysiology 55, 11361152.
Barlow, H.B. & Levick, W.R. (1965). The mechanism of directionally selective units in rabbit's retina. Journal of Physiology 178, 477504.
Bonds, A.B. (1991). Temporal dynamics of contrast gain in single cells of the cat striate cortex. Visual Neuroscience 6, 239255.
De Valois, R.L., Albrecht, D.G. & Thorell, L.G. (1982). Spatial-frequency selectivity of cells in macaque visual cortex. Vision Research 22, 545559.
Duysens, J., Maes, H. & Orban, G.A. (1987). The velocity dependence of direction selectivity of visual cortical neurones in the cat. Journal of Physiology 387, 95113.
Emerson, R.C. & Gerstein, G.L. (1977). Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. Journal of Neurophysiology 40, 136155.
Eysel, U.T., Worgotter, F. & Pape, H.-C. (1987). Local cortical lesions abolish lateral inhibition at direction-selective cells in cat visual cortex. Experimental Brain Research 68, 606612.
Eysel, U.T., Muche, T. & Worgotter, F. (1988). Lateral interactions at direction-selective striate neurones in the cat demonstrated by local cortical inactivation. Journal of Physiology 399, 657675.
Goodwin, A.W., Henry, G.H. & Bishop, P.O. (1975). Direction selectivity of simple striate cells: properties and mechanism. Journal of Neurophysiology 38, 15001523.
Goodwin, A.W. & Henry, G.H. (1978). The influence of stimulus velocity on the responses of single neurons in the striate cortex. Journal of Physiology 277, 467482.
Holub, R.A. & Morton-Gibson, M. (1981). Response of visual cortical neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. Journal of Neurophysiology 46, 12441259.
Humphrey, A.L., Sur, M., Uhlrich, D.J. & Sherman, S.M. (1985). Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. Journal of Comparative Neurology 233, 159189.
Humphrey, A.L. & Weller, R.E. (1988a). Functionally distinct groups of X-cells in the lateral geniculate nucleus of the cat. Journal of Comparative Neurology 268, 429447.
Humphrey, A.L. & Weller, R.E. (1988b). Structural correlates of functionally distinct X-cells in the lateral geniculate nucleus of the cat. Journal of Comparative Neurology 268, 448468.
Maddess, T., Mccourt, M.E., Blakeslee, B. & Cunningham, R.B. (1988). Factors governing the adaptation of cells in area 17 of the cat visual cortex. Biological Cybernetics 59, 229236.
Mastronarde, D.N. (1987). Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. Journal of Neurophysiology 57, 357380.
Mastronarde, D.N., Saul, A.B. & Humphrey, A.L. (1991). Lagged Y cells in the cat lateral geniculate nucleus. Visual Neuroscience 7, 191200.
Mclean, J. & Palmer, L. (1989). Contribution of linear spatiotemporal receptive-field structure to velocity selectivity of simple cells in area 17 of cat. Vision Research 29, 675679.
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978). Spatial summation in the receptive fields of simple cell in the cat's striate cortex. Journal of Physiology 283, 5377.
Mullikin, W.H., Jones, J.P. & Palmer, L.A. (1984). Receptive-field properties and laminar distribution of X-like and Y-like simple cells in cat area 17. Journal of Neurophysiology 52, 350371.
Nelson, S.B. (1991). Temporal interactions in the cat visual system. I. Orientation-selective suppression in the visual cortex. Journal of Neuroscience 11, 344356.
Orban, G.A., Kennedy, H. & Maes, H. (1981). Response to movement of neurons in areas 17 and 18 of the cat: direction selectivity. Journal of Neurophysiology 45, 10591073.
Orban, G.A., Hoffman, K.-P. & Duysens, J. (1985). Velocity selectivity in the cat visual system. 1. Responses of LGN cells to moving bar stimuli: a comparison with cortical areas 17 and 18. Journal of Neurophysiology 54, 10261049.
Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. (1986). Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press.
Reid, R.C. (1988). Directional selectivity and the spatiotemporal structure of the receptive fields of simple cells in cat striate cortex. Ph.D. Dissertation, Rockefeller University.
Reid, R.C., Soodak, R.E. & Shapley, R.M. (1987). Linear mechanisms of directional selectivity in simple cells of cat striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 84, 87408744.
Reid, R.C., Soodak, R.E. & Shapley, R.M. (1991). Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. Journal of Neurophysiology 66, 505529.
Saul, A.B. & Cynader, M.S. (1989). Adaptation in single units in visual cortex: the tuning of aftereffects in the temporal domain. Visual Neuroscience 2, 609620.
Saul, A.B. & Humphrey, A.L. (1989). Phase differences in the cat LGN and cortical direction selectivity. Society for Neuroscience Abstracts 15, 1394.
Saul, A.B. & Humphrey, A.L. (1990a). Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. Journal of Neurophysiology 64, 206224.
Saul, A.B. & Humphrey, A.L. (1990b). Evidence of lagged-type geniculate input to visual cortex. Society for Neuroscience Abstracts 16, 1218.
Saul, A.B. & Humphrey, A.L. (1991). Cortical direction selectivity as a function of temporal frequency. Society for Neuroscience Abstracts 17, 1015.
Shadlen, M. & Carney, T. (1986). Mechanisms of human motion perception revealed by a new cyclopean illusion. Science 232, 9597.
Tolhurst, D.J. & Doan, A.F. (1991). Evaluation of a linear model of directional selectivity in simple cells of the cat's striate cortex. Visual Neuroscience 6, 421428.
Van Santen, J.P.H. & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America 2, 300321.
Watson, A.B. & AhumadaA.J., Jr. A.J., Jr. (1983). A look at motion in the frequency domain. In Motion: Perception and Representation, ed. Tsotsos, J.K., pp. 110. New York: Association for Computing Machinery.
Watson, A.B. & AhumadaA.J., Jr. A.J., Jr. (1985). Model of human visual-motion sensing. Journal of the Optical Society of America 2, 322342.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed