Hostname: page-component-6b989bf9dc-zrclq Total loading time: 0 Render date: 2024-04-14T10:25:18.866Z Has data issue: false hasContentIssue false

Ultrastructural study of the avian ventral lateral geniculate nucleus

Published online by Cambridge University Press:  02 June 2009

Gloria D. Guiloff
Affiliation:
Physiology Department, School of Medicine, University of Utah, Salt Lake City

Abstract

The ultrastructure of the pigeon and quail ventral lateral geniculate nucleus was analyzed with standard electron microscopy and horseradish peroxidase tracing of its retinal and tectal afferents. Six types of neurons were distinguished: two large, two medium-sized, and two small types.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angaut, P. & Raffin, J.-P. (1981). Embryonic development of the nucleus isthmo-opticus in the chick: A Golgi and electron-microscopic study. Developmental Neuroscience 4, 114.CrossRefGoogle Scholar
Bagnoli, P. & Casini, G. (1985). Regional distribution of catecholaminergic terminals in the pigeon visual system. Brain Research 337, 277286.CrossRefGoogle ScholarPubMed
Bradley, P. & Horn, G. (1979). Neuronal plasticity in the chick brain: Morphological effects of visual experience in the hyperstriatum accessorium. Brain Research 162, 148153.CrossRefGoogle ScholarPubMed
Bravo, H. & Pettigrew, J.D. (1981). The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl (Tyto alba) and the burrowing owl (Speotyto cunicularia). Journal of Comparative Neurology 199, 419441.CrossRefGoogle Scholar
Britto, L.R.G., Hamassaki, D.A., Keyser, K.T. & Karten, H.J. (1989). Chemically specific retinal ganglion cells collateralize to the pars ventralis of the lateral geniculate nucleus and optic tectum in the pigeon (Columba livia). Visual Neuroscience 3, 477482.CrossRefGoogle Scholar
Carson, K.A. & Mesulam, M.-M. (1982). Electron-microscopic tracing of neural connections with horseradish peroxidase. In Tracing Neural Connections With Horseradish Peroxidase, ed. Mesulam, M.-M., pp. 153184. Oxford University: IBRO Handbook Series.Google Scholar
Cosenza, R.M. & Moore, R.Y. (1984). Afferent connections of the ventral lateral geniculate nucleus in the rat: an HRP study. Brain Research 310, 367370.CrossRefGoogle ScholarPubMed
Cowan, W.M., Adamson, L. & Powell, T.P.S. (1961). An experimental study of the avian visual system. Journal of Anatomy 95, 545563.Google ScholarPubMed
Crossland, W.J. & Uchwat, C.J. (1979). Topographic projections of the retina and optic tectum upon the ventral lateral geniculate nucleus in the chick. Journal of Comparative Neurology 185, 87106.CrossRefGoogle ScholarPubMed
Duff, T.A., Scott, G. & Mai, R. (1981). Regional differences in pigeon optic tract, chiasm, and retino-receptive layers of optic tectum. Journal of Comparative Neurology 198, 231247.CrossRefGoogle ScholarPubMed
Gamlin, P.D.R., Reiner, A., Erichsen, J.T., Karten, H.J. & Cohen, D.H. (1984). The neural substrate for the pupillary light reflex in the pigeon (Columba livia). Journal of Comparative Neurology 226, 523543.CrossRefGoogle ScholarPubMed
Gottlieb, M.D. & McKenna, O.C. (1986). Light- and electron-microscopic study of an avian pretectal nucleus, the lentiform nucleus of the mesencephalon, magnocellular division. Journal of Comparative Neurology 248, 133145.CrossRefGoogle ScholarPubMed
Granda, A.M. & Yazulla, S. (1971). The spectral sensitivity of single units in the nucleus rotundus of the pigeon (Columba livia). Journal of General Physiology 57, 363384.CrossRefGoogle ScholarPubMed
Guiloff, G.D. (1986). A light-microscope study of the avian ventral lateral geniculate nucleus. Investigative Ophthalmology and Visual Science (ARVO Suppl.) 27(3), 222.Google Scholar
Guiloff, G.D., Maturana, H.R. & Varela, F.J. (1987). The cytoarchitecture of the avian ventral lateral geniculate nucleus. Journal of Comparative Neurology 264, 509526.CrossRefGoogle ScholarPubMed
Guiloff, G.D. (1988). An electron-microscopic study of the avian ventral lateral geniculate nucleus. Investigative Ophthalmology and Visual Science (ARVO Suppl.) 29, 114.Google Scholar
Hodos, W. (1969). Color-discrimination deficits after lesions of the nucleus rotundus in pigeons. Brain Behavior and Evolution 2, 185200.CrossRefGoogle Scholar
Hodos, W. & Bonbright, J.C. (1975). Intensity and pattern discrimination after lesions of the pretectal complex, accessory optic nucleus, and ventral geniculate in pigeons. Journal of Comparative Neurology 161, 118.CrossRefGoogle ScholarPubMed
Hodos, W., Macko, K.A. & Sommers, D.I. (1982). Interactions between components of the avian visual system. Behavioral Brain Research 5, 157173.CrossRefGoogle ScholarPubMed
Holcombe, W. & Guillery, R.W. (1984). The organization of retinal maps within the dorsal and ventral lateral geniculate nuclei of the rabbit. Journal of Comparative Neurology 225, 469491.CrossRefGoogle ScholarPubMed
Hollander, H. & Sanides, D. (1976). The retinal projection to the ventral part of the lateral geniculate nucleus. An experimental study with silver-impregnation methods and axoplasmic protein tracing. Experimental Brain Research 26, 329342.CrossRefGoogle Scholar
Hughes, C.P. & Chi, D.Y.K. (1981). Afferent projections to the ventral lateral geniculate nucleus in the cat. Brain Research 207, 445448.CrossRefGoogle Scholar
Hunt, S.P. & Kunzle, H. (1976 a). Observations of the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde axonal and dendritic flow. Journal of Comparative Neurology 170, 153172.CrossRefGoogle ScholarPubMed
Hunt, S.P. & Kunzle, H. (1976 b). Selective uptake and transport of label within three identified neuronal systems after injection of [;3H];-GABA into the pigeon optic tectum: An autoradiographic and Golgi study. Journal of Comparative Neurology 170, 173190.CrossRefGoogle ScholarPubMed
Itoh, K., Conley, M. & Diamond, I.T. (1982). Retinal ganglion cell projections to individual layers of the lateral geniculate body in Galago crassicaudatus. Journal of Comparative Neurology 205,282290.CrossRefGoogle ScholarPubMed
Jordan, H. & Hollander, H. (1972). The structure of the ventral part of the lateral geniculate nucleus. A cyto- and myeloarchitectonic study in the cat. Journal of Comparative Neurology 145, 259272.CrossRefGoogle ScholarPubMed
Kaneko, A. (1971). Electrical connections between horizontal cells in the dogfish retina. Journal of Physiology B (London) 213, 95105.CrossRefGoogle ScholarPubMed
Karten, H.J., Hodos, W., Nauta, W.J.H. & Rezvin, A.M. (1973). Neural connections of the visual “Wulst”; of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). Journal of Comparative Neurology 150, 253278.CrossRefGoogle ScholarPubMed
Keyser, K.T., Britto, L.R.G. & Karten, H.J. (1989). Presumptive catecholaminergic retinal ganglion cells project to the ventral lateral geniculate nucleus in the pigeon. Society for Neuroscience Abstracts 15(Pt.2), 1207.Google Scholar
Kosaka, T. (1983 a). Gap junctions between non-pyramidal cell dendrites in the rat hippoc&us (CAl and CA3 regions). Brain Research 271, 157161.CrossRefGoogle Scholar
Kosaka, T. (1983 b). Neuronal gap junctions in the polymorph layer of the rat dentate gyrus. Brain Research 277, 347351.CrossRefGoogle ScholarPubMed
LaVail, J.H. & LaVail, M.M. (1974). The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system: A light- and electron-microscopic study. Journal of Comparative Neurology 157, 303358.CrossRefGoogle ScholarPubMed
Magnin, M. & Kennedy, H. (1979). Anatomical evidence of a third ascending vestibular pathway involving the ventral lateral geniculate nucleus and the intralaminar nuclei of the cat. Brain Research 171,523529.CrossRefGoogle ScholarPubMed
Mathers, L.H. & Mascetti, G.G. (1975). Electrophysiological and morphological properties of neurons in the ventral lateral geniculate nucleus of the rabbit. Experimental Neurology 46, 506520.CrossRefGoogle ScholarPubMed
Maturana, H.R. & Varela, F.J. (1982). Color-opponent responses in the avian lateral geniculate: A study in the quail (Coturnix coturnix japonica). Brain Research 247, 227241.CrossRefGoogle ScholarPubMed
Mesulam, M.-M. (1982). Tracing Neural Connections with Horseradish Peroxidase. Oxford University: IBRO Handbook Series.Google Scholar
Mize, R.R. & Horner, K.H. (1984). Retinal synapses of the cat medial interlaminar nucleus and ventral lateral geniculate nucleus differ in size and synaptic organization. Journal of Comparative Neurology 224, 579590.CrossRefGoogle ScholarPubMed
Nagata, T. & Hayashi, Y. (1984). The visual field representation of the rat ventral lateral geniculate nucleus. Journal of Comparative Neurology 227, 582588.CrossRefGoogle ScholarPubMed
Pateromichelakis, S. (1979). Response properties of units in the lateral geniculate nucleus of the domestic chick (Gallus domesticus). Brain Research 167, 281296.CrossRefGoogle ScholarPubMed
Reiner, A. & Karten, H.J. (1982). Laminar distribution of the cells of origin of the descending tectofugal pathways in the pigeon (Columba livia). Journal of Comparative Neurology 204, 165187.CrossRefGoogle ScholarPubMed
Reiner, A., Brecha, N.C. & Karten, H.J. (1982). Basal ganglia pathways to the tectum: The afferent and efferent connections of the lateral spiriform nucleus of pigeon. Journal of comparative Neurology 208, 1636.CrossRefGoogle Scholar
Reperant, J. & Angaut, P. (1977). The retinotectal projections in the pigeon. An experimental optical and electron-microscope study. Neuroscience 2, 119140.CrossRefGoogle ScholarPubMed
Shepherd, G.M. (1983). Neurobiology. New York: Oxford University Press.Google Scholar
Sloper, J.J. (1972). Gap junctions between dendrites in the primate neocortex. Brain Research 44, 641646.CrossRefGoogle ScholarPubMed
Somogyi, P. & Soltesz, I. (1986). Immunogold demonstration of GABA in synaptic terminals of intracellularly recorded, horseradish peroxidase-filled basket cells and clutch cells in the cat's visual cortex. Neuroscience 19, 10511065.CrossRefGoogle ScholarPubMed
Varela, F.J., Letelier, J.C., Marin, G. & Maturana, H.R. (1983). The neurophysiology of avian color vision. Archivos de Biologia y Medicina Experimentales 16, 291303.Google Scholar
Watanabe, M. (1987). Synaptic organization of the nucleus dorsolateralis anterior thalami in the Japanese quail (Coturnix coturnix japonica). Brain Research 401, 279291.CrossRefGoogle ScholarPubMed
Watanabe, M., Ito, H. & Ikushima, M. (1985). Cytoarchitecture and ultrastructure of the avian ectostriatum: Afferent terminals from the dorsal telencephalon and some nuclei in the thalamus. Journal of Comparative Neurology 236, 241257.CrossRefGoogle ScholarPubMed
Wilson, P.A. (1980 a). The organization of the visual hyperstriatum in the domestic chick, I: Topology and topography of the visual projection. Brain Research 188, 319332.CrossRefGoogle ScholarPubMed
Wilson, P.A. (1980 b). The organization of the visual hyperstriatum in the domestic chick, II: Receptive-field properties of single units. Brain Research 188, 333345.CrossRefGoogle ScholarPubMed
Yamada, E. & Ishikawa, T. (1965). The fine structure of the horizontal cells in some vertebrate retinae. Cold Spring Harbor Symposium on Quantitative Biology 30, 383392.CrossRefGoogle ScholarPubMed
Yazulla, S. & Granda, A.M. (1973). Opponent-color units in the thalamus of the pigeon (Columba livia). Vision Research 13, 15551563.CrossRefGoogle ScholarPubMed