Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 13
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Speiser, Daniel I. and Wilkens, Lon A. 2016. Scallops - Biology, Ecology, Aquaculture, and Fisheries.


    Vöcking, Oliver Kourtesis, Ioannis and Hausen, Harald 2015. Posterior eyespots in larval chitons have a molecular identity similar to anterior cerebral eyes in other bilaterians. EvoDevo, Vol. 6, Issue. 1,


    Jellies, John 2014. Which way is up? Asymmetric spectral input along the dorsal–ventral axis influences postural responses in an amphibious annelid. Journal of Comparative Physiology A, Vol. 200, Issue. 11, p. 923.


    NILSSON, DAN-E. 2013. Eye evolution and its functional basis. Visual Neuroscience, Vol. 30, Issue. 1-2, p. 5.


    Eilertsen, Mariann Drivenes, Øyvind Edvardsen, Rolf B. Bradley, Clarrisa A. Ebbesson, Lars O.E. and Helvik, Jon Vidar 2014. Exorhodopsin and melanopsin systems in the pineal complex and brain at early developmental stages of Atlantic halibut (Hippoglossus hippoglossus). Journal of Comparative Neurology, Vol. 522, Issue. 18, p. 4003.


    Connor, K. M. and Gracey, A. Y. 2011. Circadian cycles are the dominant transcriptional rhythm in the intertidal mussel Mytilus californianus. Proceedings of the National Academy of Sciences, Vol. 108, Issue. 38, p. 16110.


    Katagiri, Nobuko Katagiri, Yasuo Wada, Masaaki Okano, Daisuke Shigematsu, Yasuhide and Yoshioka, Toshitada 2014. Three-Dimensional Reconstruction of the Axon Extending from the Dermal Photoreceptor Cell in the Extraocular Photoreception System of a Marine Gastropod,Onchidium. Zoological Science, Vol. 31, Issue. 12, p. 810.


    Comeau, Luc A. and Babarro, Jose M. F. 2014. Narrow valve gaping in the invasive mussel Limnoperna securis: implications for competition with the indigenous mussel Mytilus galloprovincialis in NW Spain. Aquaculture International, Vol. 22, Issue. 3, p. 1215.


    Porter, M. L. Blasic, J. R. Bok, M. J. Cameron, E. G. Pringle, T. Cronin, T. W. and Robinson, P. R. 2012. Shedding new light on opsin evolution. Proceedings of the Royal Society B: Biological Sciences, Vol. 279, Issue. 1726, p. 3.


    Lin, Chenggang Zhang, Libin Liu, Shilin Gao, Su Xu, Qiang and Yang, Hongsheng 2013. A comparison of the effects of light intensity on movement and growth of albino and normal sea cucumbers (Apostichopus japonicusSelenka). Marine and Freshwater Behaviour and Physiology, Vol. 46, Issue. 6, p. 351.


    Randel, Nadine and Jékely, Gáspár 2016. Phototaxis and the origin of visual eyes. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 371, Issue. 1685, p. 20150042.


    Lewis Ames, Cheryl Ryan, Joseph F. Bely, Alexandra E. Cartwright, Paulyn and Collins, Allen G. 2016. A new transcriptome and transcriptome profiling of adult and larval tissue in the box jellyfish Alatina alata: an emerging model for studying venom, vision and sex. BMC Genomics, Vol. 17, Issue. 1,


    Oakley, Todd H. and Speiser, Daniel I. 2015. How Complexity Originates: The Evolution of Animal Eyes. Annual Review of Ecology, Evolution, and Systematics, Vol. 46, Issue. 1, p. 237.


    ×

Understanding the dermal light sense in the context of integrative photoreceptor cell biology

  • M. DESMOND RAMIREZ (a1), DANIEL I. SPEISER (a1), M. SABRINA PANKEY (a1) and TODD H. OAKLEY (a1)
  • DOI: http://dx.doi.org/10.1017/S0952523811000150
  • Published online: 08 July 2011
Abstract
Abstract

While the concept of a dermal light sense has existed for over a century, little progress has been made in our understanding of the mechanisms underlying dispersed photoreception and the evolutionary histories of dispersed photoreceptor cells. These cells historically have been difficult to locate and positively identify, but modern molecular techniques, integrated with existing behavioral, morphological, and physiological data, will make cell identification easier and allow us to address questions of mechanism and evolution. With this in mind, we propose a new classification scheme for all photoreceptor cell types based on two axes, cell distribution (aggregated vs. dispersed) and position within neural networks (first order vs. high order). All photoreceptor cells fall within one of four quadrants created by these axes: aggregated/high order, dispersed/high order, aggregated/first order, or dispersed/first order. This new method of organization will help researchers make objective comparisons between different photoreceptor cell types. Using integrative data from four major phyla (Mollusca, Cnidaria, Echinodermata, and Arthropoda), we also provide evidence for three hypotheses for dispersed photoreceptor cell function and evolution. First, aside from echinoderms, we find that animals often use dispersed photoreceptor cells for tasks that do not require spatial vision. Second, although there are both echinoderm and arthropod exceptions, we find that dispersed photoreceptor cells generally lack morphological specializations that either enhance light gathering or aid in the collection of directional information about light. Third, we find that dispersed photoreceptor cells have evolved a number of times in Metazoa and that most dispersed photoreceptor cells have likely evolved through the co-option of existing phototransduction cascades. Our new classification scheme, combined with modern investigative techniques, will help us address these hypotheses in great detail and generate new hypothesis regarding the function and evolution of dispersed photoreceptor cells.

Copyright
Corresponding author
*Address correspondence and reprint requests to: Todd H. Oakley, Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106. E-mail: oakley@lifesci.ucsb.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K. Adler (1976). Extraocular photoreception in amphibians. Photochemistry and Photobiology 23, 275298.

J. Aizenberg , A. Tkachenko , S. Weiner , L. Addadi & G. Hendler (2001). Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819822.

D. Arendt , K. Tessmar-Raible , H. Snyman , A.W. Dorresteijn & J. Wittbrodt (2004). Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306, 869871.

D. Arendt & J. Wittbrodt (2001). Reconstructing the eyes of Urbilateria. Philosophical Transactions of the Royal Society B: Biological Sciences 356, 15451563.

L. Arey & W. Crozier (1919). The sensory responses of Chiton. Journal of Experimental Zoology 29, 157260.

K. Arikawa & K. Aoki (1982). Response characteristics and occurrence of extraocular photoreceptors on lepidopteran genitalia. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 148, 483489.

K. Arikawa , E. Eguchi , A. Yoshida & K. Aoki (1980). Multiple extraocular photoreceptive areas on genitalia of butterfly Papilio xuthus. Nature 288, 700702.

K. Arikawa & Y. Miyako-Shimazaki (1996). Combination of physiological and anatomical methods for studying extraocular photoreceptors on the genitalia of the butterfly, Papilio xuthus. Journal of Neuroscience Methods 69, 7582.

K. Arikawa , D. Suyama & T. Fujii (1997). Hindsight by genitalia: Photo-guided copulation in butterflies. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 180, 295299.

K. Arikawa & N. Takagi (2001). Genital photoreceptors have crucial role in oviposition in Japanese yellow swallowtail butterfly, Papilio xuthus. Zoological Science 18, 175179.

J. Bagnara & M. Obika (1967). Light sensitivity of melanophores in neural crest explants. Experimentia 23, 155157.

V. Barber & D. Wright (1969). The fine structure of the eye and optic tentacle of the mollusc Cardium edule. Journal of Ultrastructure Research 26, 515528.

E. Blevins & S. Johnsen (2004). Spatial vision in the echinoid genus Echinometra. Journal of Experimental Biology 207, 42494253.

P. Boyle (1969). Rhabdomeric ocellus in a chiton. Nature 222, 895896.

P. Boyle (1972). The aesthetes of chitons. Marine and Freshwater Behaviour and Physiology 1, 171184.

P. Brown & P. Brown (1958). Visual pigments of the octopus and cuttlefish. Nature 182, 12881290.

R. Burke , L. Angerer , M. Elphick , G. Humphrey , S. Yaguchi , T. Kiyama , S. Liang , X. Mu , C. Agca & W. Klein (2006). A genomic view of the sea urchin nervous system. Developmental Biology 300, 434460.

A.R. Cashmore , J.A. Jarillo , Y. Wu & D. Liu (1999). Cryptochromes: Blue light receptors for plants and animals. Science 284, 760765.

K. Chono , Y. Fujito & E. Ito (2002). Non-ocular dermal photoreception in the pond snail Lymnaea stagnalis. Brain Research 951, 107112.

A. Chrachri & L. Nelson (2005). Whole-cell recording of light-evoked photoreceptor responses in a slice preparation of the cuttlefish retina. Visual Neuroscience 22, 359370.

E.D. Clark & D.J. Kimeldorf (1971). Behavioral reactions of the sea anemone, Anthopleura xanthogrammica, to ultraviolet and visible radiations. Radiation Research 45, 166175.

J. Cobb & G. Hendler (1990). Neurophysiological characterization of the photoreceptor system in a brittlestar, Ophiocoma wendtii (Echinodermata, Ophiuroidea). Comparative Biochemistry and Physiology A: Physiology 97, 329333.

J. Cobb & A. Moore (1986). Comparative studies on receptor structure in the brittlestar Ophiura ophiura. Journal of Neurocytology 15, 97108.

C. Cobb & R. Williamson (1998 a). Electrophysiology and innervation of the photosensitive epistellar body in the lesser octopus Eledone cirrhosa. The Biological Bulletin 195, 7887.

C. Cobb & R. Williamson (1998 b). Electrophysiology of extraocular photoreceptors in the squid Loligo forbesi (Cephalopoda: Loliginidae). Journal of Molluscan Studies 64, 111117.

C.S. Cobb , R. Williamson & S.K. Pope (1995). The responses of the epistellar photoreceptors to light and their effect on circadian rhythms in the lesser octopus, Eledone cirrhosa. Marine and Freshwater Behaviour and Physiology 26, 5969.

M. Crisp (1972). Photoreceptive function of an epithelial receptor in Nassarius reticulatus [Gastropoda, Prosobranchia]. Journal of the Marine Biological Association of the United Kingdom 52, 437442.

J. Dörjes (1968). Die Acoela (Turbellaria) der deutschen Nordseeküste und ein neues System der Ordnung. Zeitschrift fuer Zoologische Systematik und Evolutionsforschung 6, 56452.

Y. Duivenboden (1982). Non-ocular photoreceptors and photo-orientation in the pond snail Lymnaea stagnalis (L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 149, 363368.

R. Eakin (1961). Photoreceptors in the amphibian frontal organ. Proceedings of the National Academy of Sciences 47, 10841088.

R. Eakin & J. Brandenburger (1967). Differentiation in eye of a pulmonate snail Helix aspersa. Journal of Ultrastructure Research 18, 391421.

R. Eakin & J.A. Westfall (1962). Fine structure of photoreceptors in Amphioxus. Journal of Ultrastructure Research 6, 531539.

S. Edwards , N. Charlie , M. Milfort , B. Brown , C. Gravlin , J. Knecht & K. Miller (2008). A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biology 6, 17151729.

Y. Fu & K.W. Yau (2007). Phototransduction in mouse rods and cones. Pflügers Archiv: European Journal of Physiology 454, 805819.

C.V. Gabel , H. Gabel , D. Pavlichin , A. Kao , D.A. Clark & A.D.T. Samuel (2007). Neural circuits mediate electrosensory behavior in Caenorhabditis elegans. Journal of Neuroscience 27, 75867596.

T. Gotow (1975). Morphology and function of the photoexcitable neurones in the central ganglia of Onchidium verruculatum. Journal of Comparative Physiology A: Neuroethology 99, 139152.

T. Gotow & T. Nishi (2008). Simple photoreceptors in some invertebrates: Physiological properties of a new photosensory modality. Brain Research 1225, 316.

T. Gotow & T. Nishi (2002). Light-dependent K channels in the mollusc Onchidium simple photoreceptors are opened by cGMP. Journal of General Physiology 120 (4): 581597. doi:10.1085/jgp.20028619.

T. Hara & R. Hara (1980). Retinochrome and rhodopsin in the extraocular photoreceptor of the squid, Todarodes. The Journal of General Physiology 75, 1.

S. Hattar , R.J. Lucas , N. Mrosovsky , S. Thompson , R. Douglas , M.W. Hankins , J. Lem , M. Biel , F. Hofmann & R.G. Foster (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 7581.

S. Hecht (1919). Sensory equilibrium and dark adaptation in Mya arenaria. The Journal of General Physiology 1, 545558.

P. Hegemann (2008). Algal sensory photoreceptors. Annual Review of Plant Biology 59, 167189.

G. Hendler (1984). Brittlestar color-change and phototaxis (Echinodermata: Ophiuroidea: Ophiocomidae). Marine Ecology 5, 379401.

G. Hendler & M. Byrne (1987). Fine structure of the dorsal arm plate of Ophiocoma wendtii: Evidence for a photoreceptor system (Echinodermata, Ophiuroidea). Zoomorphology 107, 261272.

G. Jekely (2009). Evolution of phototaxis. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 27952808.

S. Johnsen (1997). Identification and localization of a possible rhodopsin in the echinoderms Asterias forbesi (Asteroidea) and Ophioderma brevispinum (Ophiuroidea). The Biological Bulletin 193, 97105.

D. Kennedy (1960). Neural photoreception in a lamellibranch mollusc. Journal of General Physiology 44, 277299.

D. Kennedy (1963). Physiology of photoreceptor neurons in the abdominal nerve cord of the crayfish. The Journal of General Physiology 46, 551.

D. Kojima , A. Terakita & T. Ishikawa (1997). A novel Go-mediated phototransduction cascade in scallop visual cells. Journal of Biological Chemistry 272, 2297922982.

M. Koyanagi , K. Kubokawa & H. Tsukamoto (2005). Cephalochordate melanopsin: Evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Current Biology 15, 10651069.

M. Koyanagi , K. Takano , H. Tsukamoto & K. Ohtsu (2008). Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade. Proceedings of the National Academy of Sciences 105, 1557615580.

M. Koyanagi , A. Terakita , K. Kubokawa & Y. Shichida (2002). Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis-and all-trans-retinals as their chromophores. FEBS Letters 531, 525528.

Z. Kozmik , J. Ruzickova & K. Jonasova (2008). Assembly of the cnidarian camera-type eye from vertebrate-like components. Proceedings of the National Academy of Sciences 105, 89898993.

T. Kusakabe , R. Kusakabe , I. Kawakami , Y. Satou , N. Satoh & M. Tsuda (2001). Ci-opsin1, a vertebrate-type opsin gene, expressed in the larval ocellus of the ascidian Ciona intestinalis. FEBS Letters 506, 6972.

T. Kusakabe & M. Tsuda (2007). Photoreceptive systems in ascidians. Photochemistry and Photobiology 83, 248252.

T. Lacalli (2004). Sensory systems in amphioxus: A window on the ancestral chordate condition. Brain Behavior and Evolution 64, 148162.

M.P. Lesser , K.L. Carleton , S.A. Bottger , T.M. Barry & C.W. Walker (2011). Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6. Proceedings of the Royal Society B: Biological Sciences. doi:10.1098/rspb.2011.0336.

V. Light (1930). Photoreceptors in Mya arenaria, with special reference to their distribution, structure, and function. Journal of Morphology 49, 143.

J. Liu , A. Ward , J. Gao , Y. Dong , N. Nishio , H. Inada , L. Kang , Y. Yu , D. Ma , T. Xu , I. Mori , Z. Xie & X.Z. Xu (2010). C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nature Neuroscience 13, 715722.

K. Lukowiak & J. Jacklet (1972). Habituation and dishabituation: Interactions between peripheral and central nervous systems in Aplysia. Science 178, 13061308.

V. Martin (2002). Photoreceptors of cnidarians. Canadian Journal of Zoology 80, 17031722.

L.M. Mathger , S.B. Roberts & R.T. Hanlon (2010). Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis. Biology Letters 6, 600603.

N. Millott (1975). The photosensitivity of echinoids. Advances in Marine Biology 13, 152.

Y. Miyako , K. Arikawa & E. Eguchi (1993). Ultrastructure of the extraocular photoreceptor in the genitalia of a butterfly, Papilio xuthus. The Journal of Comparative Neurology 327, 458468.

J. Morton (1960). The responses and orientation of the bivalve Lasaea rubra Montagu. Journal of the Marine Biological Association of the United Kingdom 39, 526.

E. Nasi & M. Del Pilar Gomez (2009). Melanopsin-mediated light-sensing in amphioxus: A glimpse of the microvillar photoreceptor lineage within the deuterostomia. Communicative and Integrative Biology 2, 441443.

D. Nilsson (1994). Eyes as optical alarm systems in fan worms and ark clams. Philosophical Transactions: Biological Sciences 346, 195212.

D. Nilsson (2009). The evolution of eyes and visually guided behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 28332847.

K. Nordstrom , R. Wallen , J. Seymour & D. Nilsson (2003). A simple visual system without neurons in jellyfish larvae. Proceedings of the Royal Society B: Biological Sciences 270, 23492354.

W.J. North (1957). Sensitivity to light in the sea anemone Metridium senile (L.). The Journal of General Physiology 40, 715733.

W. North & C. Pantin (1958). Sensitivity to light in the sea-anemone Metridium senile (L): Adaptation and action spectra. Proceedings of the Royal Society of London 148, 385396.

S. Ooka , T. Katow , S. Yaguchi , J. Yaguchi & H. Katow (2010). Spatiotemporal expression pattern of an encephalopsin orthologue of the sea urchin Hemicentrotus pulcherrimus during early development, and its potential role in larval vertical migration. Development, Growth & Differentiation 52, 195207.

N. Oshima (2001). Direct reception of light by chromatophores of lower vertebrates. Pigment Cell Research 14, 312319.

S. Panda , T. Sato , A. Castrucci , M. Rollag , W. Degrip , J. Hogenesch , I. Provencio & S. Kay (2002). Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298, 22132216.

S. Pankey , H. Sunada , T. Horikoshi & M. Sakakibara (2010). Cyclic nucleotide-gated channels are involved in phototransduction of dermal photoreceptors in Lymnaea stagnalis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 180, 12051211.

L. Passano & C. Mccullough (1962). The light response and the rhythmic potentials of Hydra. Proceedings of the National Academy of Sciences of the United States of America 48, 13761382.

V.B. Pearse (1974). Modification of sea anemone behavior by symbiotic zooxanthellae: Expansion and contraction. Biological Bulletin 147, 641651.

D.C. Plachetzki , C.R. Fong & T.H. Oakley (2010). The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proceedings of the Royal Society B: Biological Sciences 277, 19631969.

D.C. Plachetzki , BM. Degnan & TH. Oakley (2007). The Origins of Novel Protein Interactions during Animal Opsin Evolution. PLoS ONE 2(10): e1054. doi:10.1371/journal.pone.0001054.

F. Raible , K. Tessmar-Raible , E. Arboleda , T. Kaller , P. Bork , D. Arendt & M. Arnone (2006). Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Developmental Biology 300, 461475.

S. Richter , R. Loesel , G. Purschke , A. Schmidt-Rhaesa , G. Scholtz , T. Stach , L. Vogt , A. Wanninger , G. Brenneis , C. Doering , S. Faller , M. Fritsch , P. Grobe , C.M. Heuer , S. Kaul , O.S. Moller , C.H.G. Mueller , V. Rieger , B.H. Rothe , M.E.J. Stegner & S. Harzsch (2010). Invertebrate neurophylogeny: Suggested terms and definitions for a neuroanatomical glossary. Frontiers in Zoology 7, 29.

E.B. Rubin , Y. Shemesh , M. Cohen , S. Elgavish , H.M. Robertson & G. Bloch (2006). Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Research 16, 13521365.

M. Sakakibara , T. Aritaka , A. Iizuka , H. Suzuki , T. Horikoshi & K. Lukowiak (2005). Electrophysiological responses to light of neurons in the eye and statocyst of Lymnaea stagnalis. Journal of Neurophysiology 93, 493507.

S. Sawyer , H. Dowse & J. Shick (1994). Neurophysiological correlates of the behavioral response to light in the sea anemone Anthopleura elegantissima. Biological Bulletin 186, 195201.

J. Shick & J.A. Dykens (1984). Photobiology of the symbiotic sea anemone Anthopleura elegantissima: Photosynthesis, respiration, and behavior under intertidal conditions. The Biological Bulletin 166, 608619.

I. Siddiqui & D. Viglierchio (1970). Ultrastructure of photoreceptors in the marine nematode Deontostoma californicum. Journal of Ultrastructure Research 32, 558571.

C. Singla (1974). Ocelli of hydromedusae. Cell and Tissue Research 149, 413429.

D.I. Speiser , D.J. Eernisse & S. Johnsen (2011). A chiton uses aragonite lenses to form images. Current Biology 21, 665670.

D. Steven (1963). The dermal light sense. Biological Reviews 38, 204240.

C. Su , D. Luo , A. Terakita , Y. Shichida , H. Liao , M. Kazmi , T. Sakmar & K. Yau (2006). Parietal-eye phototransduction components and their potential evolutionary implications. Science 311, 16171621.

H. Suga , V. Schmid & W. Gehring (2008). Evolution and functional diversity of jellyfish opsins. Current Biology 18, 5155.

P. Tardent & E. Frei (1969). Reaction patterns of dark and light adapted Hydra to light stimuli. Cellular and Molecular Life Sciences 25, 265267.

E. Tarttelin , J. Bellingham , M. Hankins , R. Foster & R.J. Lucas (2003). Neuropsin (Opn5): A novel opsin identified in mammalian neural tissue. FEBS Letters 554, 410416.

D. Tong , N. Rozas , T. Oakley , J. Mitchell , N.J. Colley & M.J. Mc Fall-Ngai (2009). Evidence for light perception in a bioluminescent organ. Proceedings of the National Academy of Sciences 106, 98369841.

A. Ward , J. Liu , Z. Feng & X. Xu (2008). Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nature Neuroscience 11, 916922.

G. Watson & D. Hessinger (1989). Cnidocyte mechanoreceptors are tuned to the movements of swimming prey by chemoreceptors. Science 243, 15891591.

G. Watson & D. Hessinger (1994). Evidence for calcium channels involved in regulating nematocyst discharge. Comparative Biochemistry and Physiology 107, 473481.

M. Wiederhold JR, E.M. & A. Bell (1973). Photoreceptor spike responses in the hardshell clam, Mercenaria mercenaria. Journal of General Physiology 61, 2455.

L. Wilkens & J. Larimer (1972). The CNS photoreceptor of crayfish: Morphology and synaptic activity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 80, 389407.

Y. Xiang , Q. Yuan , N. Vogt , L.L. Looger , L.Y. Jan & Y.N. Jan (2010). Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468, 921926.

D. Yerramilli & S. Johnsen (2010). Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea). Journal of Experimental Biology 213, 249255.

U. Zylstra (1971). Distribution and ultrastructure of epidermal sensory cells in the freshwater snails Lymnaea stagnalis and Biomphalaria pfeifferi. Netherlands Journal of Zoology 22, 283298.

R. Hardie & P. Raghu (2001). Visual Transduction in Drosophila. Nature. 413, 186193.

E.M. Ullrich-Lüter S. Dupont , E Arboleda ., H. Hausen , MI. Arnone (2011). Unique system of photoreceptors in sea urchin tube feet. Proceedings of the National Academy of Sciences of the United States of America, 10.1073/pnas.1018495108.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: