Skip to main content
×
×
Home

Visual cortex neurons in monkey and cat: Effect of contrast on the spatial and temporal phase transfer functions

  • Duane G. Albrecht (a1)
Abstract

The responses of simple cells (recorded from within the striate visual cortex) were measured as a function of the contrast and the frequency of sine-wave grating patterns in order to explore the effect of contrast on the spatial and temporal phase transfer functions and on the spatiotemporal receptive field. In general, as the contrast increased, the phase of the response advanced by approximately 45 ms (approximately one-quarter of a cycle for frequencies near 5 Hz), although the exact value varied from cell to cell. The dynamics of this phase-advance were similar to the dynamics of the amplitude: the amplitude and the phase increased in an accelerating fashion at lower contrasts and then saturated at higher contrasts. Further, the gain for both the amplitude and the phase appeared to be governed by the magnitude of the contrast rather than the magnitude of the response. For the spatial phase transfer function, variations in contrast had little or no systematic effect; all of the phase responses clustered around a single straight line, with a common slope and intercept. This implies that the phase-advance was not due to a change in the spatial properties of the neuron; it also implies that the phase-advance was not systematically related to the magnitude of the response amplitude. On the other hand, for the temporal phase transfer function, the phase responses fell on five straight lines, related to the five steps in contrast. As the contrast increased, the phase responses advanced such that both the slope and the intercept were affected. This implies that the phase-advance was a result of contrast-induced changes in both the response latency and the shape/symmetry of the temporal receptive field.

Copyright
References
Hide All
Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America 2, 284289.
Albrecht, D.G. (1978). Analysis of visual form. Doctoral Dissertation, University of California, Berkeley.
Albrecht, D.G. & Hamilton, D.B. (1982). Striate cortex of monkey and cat: Contrast response function. Journal of Neurophysiology 48, 217237.
Albrecht, D.G., Farrar, S.B. & Hamilton, D.B. (1984). Spatial contrast adaptation characteristics of neurones recorded in the cat≈s visual cortex. Journal of Physiology (London) 347, 713739.
Albrecht, D.G. & Geisler, W.S. (1991). Motion selectivity and the contrast-response function of simple cells in the visual cortex. Visual Neuroscience 7, 531546.
Albrecht, D.G. & Geisler, W.S. (1994). Visual cortex neurons in monkey and cat: Contrast response nonlinearities and stimulus selectivity. In Computational Vision Based on Neurobiology, ed. Lawton, T., pp. 1231. Bellingham, Washington: SPIE Press.
Bonds, A.B. (1991). Temporal dynamics of contrast gain in single cells of the cat striate cortex. Visual Neuroscience 6, 239255.
Bonds, A.B. (1992). Spatial and temporal nonlinearities in the receptive fields of striate cortical cells. In Non-Linear Vision, ed. Pinter, G., pp. 329352. Boca Raton, Florida: CRC Press.
Bonds, A.B. (1993). The encoding of cortical contrast gain control. In Contrast Sensitivity, ed. Shapley, R. & Lam, D., pp. 215230. Cambridge, Massachusetts: MIT Press.
Carandini, M. & Heeger, D. (1994). Summation and division by neurons in primate visual cortex. Science 264, 13331336.
Dawis, S., Shapley, R., Kaplan, E. & Tranchina, D. (1984). The receptive-field organization of X-cells in the cat: Spatiotemporal coupling and asymmetry. Vision Research 24, 549564.
Dean, A.F. & Tolhurst, D.J. (1986). Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex. Experimental Brain Research 62, 143151.
DeAngelis, G.C., Ohzawa, I. & Freeman, R.D. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat≈s striate cortex. II. Linearity of temporal and spatial summation. Journal of Neurophysiology 69, 11181135.
De Valois, R.L., Albrecht, D.G. & Thorell, L.G. (1982). Spatial frequency selectivity of cells in macaque visual cortex. Vision Research 22, 545559.
De Valois, R.L. & De Valois, K.K. (1988). Spatial Vision. New York: Oxford University Press.
Emerson, R.C., Bergen, J.R. & Adelson, E.H. (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Research 32, 203218.
Enroth-Cugell, C, Robson, J.G., Schweitzer-Tong, D.E. & Watson, A.B. (1983). Spatiotemporal interactions in cat retinal ganglion cells showing linear spatial summation. Journal of Physiology (London) 341, 279307.
Ferster, D. (1988). Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. Journal of Neuroscience 8, 11721180.
Field, D.J. & Tolhurst, D.J. (1986). The structure and symmetry of simple cell receptive-field profiles in the cat≈s visual cortex. Proceedings of the Royal Society B (London) 228, 379400.
Geisler, W.S., Albrecht, D.G., Salvi, R.J. & Saunders, S.S. (1991). Discrimination performance of single neurons: Rate and temporal pattern information. Journal of Neurophysiology 66, 334362.
Geisler, W.S. & Albrecht, D.G. (1992). Cortical neurons: Isolation of contrast gain control. Vision Research 32, 14091410.
Geisler, W.S. & Albrecht, D.G. (1995). Bayesian analysis of identification performance in monkey visual cortex: Nonlinear mechanisms and stimulus certainty. Vision Research 35, 27232730.
Hamilton, D.B. (1987). The phase transfer function of visual cortical neurons. Doctoral Dissertation, University of Texas, Austin.
Hamilton, D.B., Albrecht, D.G. & Geisler, W.S. (1989). Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function. Vision Research 29, 12851308.
Hawken, M.J. & Parker, A.J. (1987). Spatial properties of neurons in the monkey striate cortex. Proceedings of the Royal Society B (London) 231, 251288.
Heeger, D.J. (1991). Nonlinear model of neural responses in cat visual cortex. In Computational Models of Visual Processing, ed. Landy, M.S. & Movshon, J.A., pp. 119133. Cambridge, Massachusetts: MIT Press.
Heeger, D.J. (1992a). Normalization of cell responses of cat striate cortex. Visual Neuroscience 9, 191197.
Heeger, D.J. (1992b). Half-squaring in responses of cat striate cells. Visual Neuroscience 9, 427443.
Heeger, D.J. (1993). Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. Journal of Neurophysiology 70, 18851898.
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction, and functional architecture in the cat≈s visual cortex. Journal of Physiology (London) 160, 106154.
Hubel, D.H. & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology (London) 195, 215243.
Jagadeesh, B., Wheat, H.S. & Ferster, D. (1993). Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science 262, 19011904.
Jones, J.P. & Palmer, L.A. (1987). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 11971211.
Lee, B.B., Elephandt, A. & Virsu, V. (1981 a). Phase of responses to sinusoidal gratings of cells in cat retina and lateral geniculate nucleus. Journal of Neurophysiology 45, 807817.
Lee, B.B., Elephandt, A. & Virsu, V. (1981 b). Phase of responses to sinusoidal gratings of simple cells in cat striate cortex. Journal of Neurophysiology 45, 818828.
Lennie, P. (1981). The physiological basis of variations in visual latency. Vision Research 21, 815824.
Li, C. & Creutzfeldt, O. (1984). The representation of contrast and other stimulus parameters by single neurons in area 17 of the cat. Pflugers Archiv 401, 304314.
McLean, J. & Palmer, L.A. (1994). Organization of simple cell responses in the three-dimensional (3-D) frequency domain. Visual Neuroscience 11, 295306.
McLean, J., Raab, S. & Palmer, L.A. (1994). Contribution of linear mechanisms to the specification of local motion by simple cells in area 17 and 18 of the cat. Visual Neuroscience 11, 271294.
Movshon, J.A., Thompson, I.S. & Tolhurst, D.J. (1978). Spatial summation in the receptive fields of simple cells in the cat≈s striate cortex. Journal of Physiology (London) 283, 5377.
Palmer, L.A., Jones, J.P. & Stepnoski, R.A. (1991). Striate receptive fields as linear filters: Characterization in two dimensions of space. In The Neural Basis of Visual Function, ed. Leventhal, A.G., pp. 246265. Boston, Massachusetts: CRC Press.
Pollen, D.A. & Ronner, S.F. (1981). Phase relationships between adjacent simple cells in the cat. Science 212, 14091411.
Pollen, D.A., Foster, K.H. & Gaska, J.P. (1985). Phase-dependent response characteristics of visual cortical neurons. In Models of the Visual Cortex, ed. Rose, D. & Dobson, V.G., pp. 281291. New York: John Wiley.
Reid, R.C., Victor, J.D. & Shapley, R.M. (1992). Broadband temporal stimuli decrease the integration time of neurons in cat striate cortex. Visual Neuroscience 9, 3945.
Robson, J.G. (1975). Receptive fields: Spatial and intensive representation of the visual image. In Handbook of Perception, Vol. 5: Vision, ed. Carterette, E.C. & Friedman, M.P., pp. 81112. New York: Academic Press.
Robson, J.G. (1983). Frequency domain visual processing. In Physical and Biological Processing of Images, ed. Braddick, O.J. & Sleigh, A.C., pp. 7387. New York: Springer-Verlag.
Sclar, G. & Freeman, R.D. (1982). Orientation selectivity in the cat≈s striate cortex is invariant with stimulus contrast. Experimental Brain Research 46, 457461.
Sclar, G. (1987). Expression of “retinal” contrast gain control by neurons of the cat≈s lateral geniculate nucleus. Experimental Brain Research 66, 589596.
Sclar, G., Maunsell, J.H.R. & Lennie, P. (1990). Coding of image contrast in central visual pathways of macaque monkey. Vision Research 30, 110.
Shapley, R.M. & Victor, J.D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. Journal of Physiology (London) 285, 275298.
Shapley, R.M. & Victor, J.D. (1979). The contrast gain control of the cat retina. Vision Research 19, 431434.
Shapley, R.M. & Victor, J.D. (1981). How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. Journal of Physiology (London) 318, 161179.
Shapley, R.M. & Lennie, P. (1985). Spatial frequency analysis in the visual system. Annual Review of Neuroscience 8, 547583.
Skottun, B.C., Bradley, A., Sclar, G., Ohzawa, I. & Freeman, R.D. (1987). The effects of contrast on visual orientation and spatial frequency discrimination: A comparison of single cells and behavior. Journal of Neurophysiology 57, 773786.
Skottun, B.C., De Valois, R.L., Grosof, D.H., Movshon, J.A., Albrecht, D.G. & Bonds, A.B. (1991). Classifying simple and complex cells on the basis of response modulation. Vision Research 31, 10791086.
Tolhurst, D.J., Movshon, J.A. & Dean, A.F. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research 23, 775785.
Watson, A.B. & Ahumada, A.J. (1983). A look at motion in the frequency domain. NASA Technical Memorandum 84352.
Watson, A.B. & Ahumada, A.J. (1985). Model of human visual motion sensing. Journal of the Optical Society of America A 3, 300307.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Visual Neuroscience
  • ISSN: 0952-5238
  • EISSN: 1469-8714
  • URL: /core/journals/visual-neuroscience
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 194 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 15th August 2018. This data will be updated every 24 hours.